
NASA-CR-190715

Ground Systems Development
Environment (GSDE)

Interface Requirements and
Prototyping Plan

c_
_0

r_ _0 O_
I -- _O
e,/ (J ,-w
O- _ ,-w

f_

L_

Victor E. Church

John Philips
Mitchell Bassman

C. Williams
Computer Sciences Corporation

// '

April 1991

Cooperative Agreement NCC 9-16

Research Activity No. SE.34

NASA Johnson Space Center

Mission Operations Directorate

Space Station Ground Systems Division

Research Institute for Computing and Information Systems

University of Houston-C/ear Lake

o
... .. IliIIII I III IIIII II II I

TECHNICAL REPORT

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

CompuUng and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center (jSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

pmposed a partnership with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in compu_ng and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCLand its gateway afllliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary involvement of faculty and students

from each of the four schools: Business and Public Administration, Educa-

t.lon, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

Is focused on serving the research and advanced development needs of

industry.

Moreover. UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertlse to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research and education pmgrams, while other research

organizations are involved via the *gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tlon sciences. RICIS, working Jointly With its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.

i

m

Ground Systems Development
Environment (GSDE)

Interface Requirements and
Pro to typing Plan

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing

and Information Systems by Computer Sciences Corporation in cooperation with the

University of Houston-Clear Lake. The members of the research team were Victor

E. Church, D. Long and Ray Hartenstein from CSC. Mr. Robert E. Coady was

CSC program manager for this project during the initial phase. Later, Mr. Ray

Hartenstein assumed the role of CSC program manager. Dr. Alfredo Perez-Davila
served as RICIS research coordinator.

Funding was provided by the Mission Operations Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity

was Thomas G. Price of the ADPE and Support Systems Office, S13ace Station

Ground Systems Division, Mission Operations Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

CSC/TR-90/6155

Ground Systems Development Environment (GSDE)
Interface Requirements and Prototyping Plan

Prepared for

The University of Houston-Clear Lake
Houston, Texas

by

Computer Sciences Corporation

System Sciences Division

Beltsville, Maryland
and

Special Projects Division

Falls Church, Virginia

under

Subcontract No. 075

RICIS Research Activity No. SE-34

NASA Cooperative Agreement NCC 9-16

April 1991

Prepared by:

V. Church

M. Bassman

J. Philips
C. Williams

Date

Quality Assurance:

o ' /
z_ -2. 7_ -4,y

Date

Approvetf_ ,2

R I.-}_aenste='" ' " "'in Date

g

CSC/SSD - UHCL/RICIS ii

CSC/TR-90/6155

GSDE Interface Study

April 1991

CSC/TR-90/6155
GSDE Interface Study

Preface

This report is based partly on information provided by Loral Space

Information Systems Corporation and by CAE-Link Corporation. It is

also based on Compul_r Science Corporation's own understanding of the

requirements placed on the Ground Software Development Environment

(GSDE) for the development of Space Station Freedom ground system

software. Specific documents and presentations used in this study axe

identified as references. At the present time, the structure of the GSDE is

somewhat fluid, and configuration plans are not likely to become stable

until the overall Space Station Freedom Project completes its restructuring

and budgeting activity.

Efforts have been made in this report to reflect the probable GSDE

configuration, and to address general issues that axe not likely to be

affected by the restructuring. However, complete fidelity with current

designs and terminology would be of little value due to the unsettled

condition of the project; and would be quickly out-of-date in any case.

This report therefore does not represent a precise snapshot; rather, it

addresses issues that are generally applicable to environment interfaces.

Partly as a result of the ongoing restructuring, the prototyping plans

described in this report are not planned for immediate execution.

CSC/SSD - UHCL/RICIS iii April 1991

CSC/SSD - UHCL/RICIS iv

CSC/TR-90/6155

GSDE Interface Study

April 1991

CSC/TR-90/6155

GSDE Interface Study

Abstract

This report describes the data collection and requirements analysis effort

of the GSDE Interface Requirements study. It identifies potential
problems in the interfaces among applications and processors in the

heterogeneous systems that comprise the GSDE. It describes possible

strategies for addressing those problems. It also identifies areas where
further research and prototyping are needed to demonstrate the capabilities

and feasibility of those strategies, and defines a plan for building the

necessary software prototypes.

CSC/SSD - UHCL/RIClS v April 199t

CSC/SSD - UHCL/RICIS vi

CSC/TR-90/6155

GSDE Interface Study

April 1991

CSC/TR-90/6155
GSDE Interface Study

Table of Contents

Section 1 - Introduction ... 1

1.1 Purpose of this Report ... 1

1.2 Scope and Organization of this Report .. 2

1.3 Statement of the Problem .. 3

1.4 Related Documents and References ... 4

Section 2 - Analysis of the Problem .. 7

2.1 Ground Software Development Context .. 7

2.2 Host-to-Target Development Requirements .. 10

2.2.1 Cross-Development Justification ... 10

2.2.2 Models of Host-Target Development 11

2.2.3 Obstacles to Host-Target Development. 13

2.2.4 Experiences with Cross-Development 16

2.2.5 Implications of Different Models ... 17

2.3 Strategies for Cost-Effective Development ... 18

2.4 Ground System Development ... 19

2.4.1 Ground Support Development Environment 19

2.4.2 Space Station Training Facility .. 21

2.4.3 SSCC Software Development .. 23

2.5 Requirements Collection Process .. 24

Section 3 - Development Process Interface Issues ... 27

3.1 Standard Software Process .. 27

3.2 Distributed Configuration Management .. 31

3.2.1 CM During Code Development ... 31

3.2.2 Post-Delivery CM ... 32

3.3 Implementation Status Reporting .. 33

3.3.1 Test Status Reporting .. 33

3.3.2 Process Status Reporting ... 34

3.4 Software Transparency ... 34

3.5 General Issues for SSTF Software Development 35

3.5.1 Multiple Languages in the SSTF ... 35

3.5.2 Multiple Types of Machines for SSTF IVTE 36

3.5.3 [VTE Machines as Target Machines .. 37

3.6 General Issues for SSCC Software Development 37

CSC/SSD - UHCL/RICIS vii
PI_CEDtNG PAqE BLANK NO3"

April 1991

CSC/TR-90/6155
GSDE Interface Study

3.6.1 Use of Ada and non-Ada in the SSCC 37

3.6.2 Multiple Target Machines for the SSCC 38

Section 4 - Host-Target Transition Interfaces .. 39

4.1 Operational Procedures ... 39

4.1.1 Object Transport and Location Tracking 40

4.1.2 Object Execution and Shams Reporting 41

4.2 Using a Virtual Machine Environment (e.g., Cronus) 42

4.3 Simulations and Special Devices ... 42

Section 5 - Proposed Prototype Work .. 45

5.1 Virtual Machine Environment ... 45

5.1.1 POSIX Interface 45

5.1.2 Interoperability .. 46

5.2 Software Operations ..48

5.2.1 Distributed Configuration Management 48

5.2.2 Implementation Shams Reporting ... 49

5.3 Investigation of Concepts and Environments 50

5.3.1 Analysis of COTS Packages and Standards 50

5.3.2 PCEE Concept Prototyping ... 50

Section 6 - Technical Approach ... 53

6.1 Project Organization and Resources .. 53
6.1.1 Contractor Facilities .. 53

6.1.2 Software Engineering Environment ... 54.

6.1.3 Government-Furnished Equipment, Software, and Services 54

6.2 Prototyping Products ... 55

6.3 Risk Management ... 55

6.4 Technical Information Interfaces ... 57

6.5 Product Assurance Plan ... 57

6.5.1 Quality Asstwance Approach ... 57

6.5.2 Configuration Management ... 58

6.5.2.1 Software Library ... 58

6.5.2.2 Problem/Change Report .. 59

Section 7 - Summary and Findings .. 61

Glossary and Abbreviations ... 63

CSC/SSD - UHCL/RICIS viii April 1991

CSC/TR-90/6155
GSDE Interface Study

List of Figures and Tables

Figures

2-1.

2-2.

2-3.

2-4.

2-5.

2-6.

2-7.

2-8.

2-9.

3-1.

5-1.

Tables

6-I.

Ground Systems Development Environment ... 8

Ground Systems/Software Production Facility 9

Bare-Machine Targeting .. 12

Peer-Machine Targeting .. 12

Virtual Machine Targeting .. 13

GSDE Communications Architecture .. 20

GSDE Functional Architecture .. 21

TSC Development Facility .. 22

MSC Development Facility ... 24

Cross Development Process ... 28

Communications Modes .. 47

Risk Mitigation Strategy .. 56

CSC/SSD - UHCL/RICIS ix April 1991

CSC/TR-90/6155

GSDE Interface Study

Section 1 - Introduction

As part of the Space Station Freedom Program (SSFP), the Mission Operations

Directorate (MOD) at the Johnson Space Center (JSC) is developing a Space Station

Training Facility (SSTF) and a Space Station Control Center (SSCC). The software

components of these systems will be developed in the Ground Systems Development

Environment (GSDE). The GSDE will serve as a common, high-productivity support

environment for the development and configuration control of ground system software.

It will make use of tools and procedures developed by the SSFP Software Support

Environment (SSE) System Project. Both the SSTF and the SSCC will be developed

using elements of this environment.

Computer Sciences Corporation (CSC) is studying waysto improve the effectiveness of

the GSDE in supporting development for different target computer environments, and in

providing overall configuration management (CM) of ground system software. This

study is being performed in cooperation with the Research Institute for Computing and

Information Systems (RICIS) of the University of Houston-Clear Lake. The study

includes identifying and documenting interface requirements, and planning software

prototypes to support those interfaces.

This report, Ground Systems Development Environment (GSDE) Interface Requirements

and Prototyping Plan, addresses the problems of constructing software in the GSDE for

integration, test, and operation in the integration, verification, and test environments

(IVTEs). It outlines requirements for software to support the subject interfaces and

describes a plan for prototyping that software.

1.1 Purpose of this Report

This report documents the data collection and problem analysis phases of the GSDE

interface study. The interfaces of concern axe those between the software development

(or host) environment and the software execution (or target) environment, often by way

of a dedicated integration, validation, and test (IV&T) environment. This study

generally treats the IV&T environment as a target environment, although there are issues

involving the differences between the operational and the IV&T environments. The

interface issues addressed in this study include the following:

Transfer of software from one environment to the other, including any necessary

redevelopment (sometimes called rehosting, or porting); this issue involves

questions of transportability and interoperability of applications

Communications of status information, test data, and test results between the two

environments (host and IV&T/target)

CSC/SSD - UHCL/RICIS 1 April 1991

CSC/TR-90/6155
GSDE Interface Study

Configuration management and change control of software across the boundary
between the two environments

Support for parallel, geographically distributed environments for development

and execution from a centrally managed facility.

These interfaces reflect the need for cross-development (i.e., development in one

computer environment for execution in another) of ground system software within the

GSDE. The initial activity of this study was to identify obstacles to cross-development

(interface problems) that are specific to the SSTF and SSCC projects. While many of the

software construction details of those projects are unknown, due to the early state of the

design of those two systems, to pending procurements, and to the ongoing SSFP

restructuring, it is possible to identify and report on some of the anticipated problems.

At the same time, the study team has identified approaches to resolving or reducing those

problems. The study also considers the CM requirements involved in utilizing the tools

provided with the SSE to support parallel integration and test activities.

The preliminary version of this report (September 1990) provided the basis for a more

detailed operational analysis of the interfaces and CM issues, reported in the document

Ground System Development Environment (GSDE) Interface Requirements Analysis:

Operations Scenarios (CSC/TM-91/6061, February 1991).

This report also describes plans for the prototyping effort of the study. It describes

procedures, operations, and interface problems that can be addressed and investigated

with prototypes. The areas of investigation include software development operations in

the complex of computers and workstations designated the Ground Systems/Software

Production Facility (GS/SPF), GS/SPF to IVTE interfaces, and methods of achieving
apparent functional equivalence between host and target systems.

This report is intended to serve as input for the evolutionary development of the GSDE.

It identifies requirements for moving software between the GS/SPF and the IVTE for

compilation, testing, configuration management, and operations. It is intended to aid in

developing the operational plans for use of the GSDE by the SSTF and SSCC

contractors, as well as in acquiring the necessary tools and equipment for cost-effective

software engineering. It also serves as a basis for development of operations scenarios
that will be used in fully characterizing the GS/SPF to IVTE interfaces.

1.2 Scope and Organization of this Report

The interface requirements addressed in this report include the following:

• Operational flow of software between elements of the GS/SPF and the

appropriate IVTE, e.g., moving source code to an IVTE for compilation and test

CSC/SSD - UHCL/RICIS 2 April 1991

CSC/TR-90/6155
GSDE Interface Study

• DistributedCM, duringsoftwaredevelopmentandafterdelivery

Interfacemechanisms(protocols)usedby groundsystemsoftwarefor
communicationswithin its executionenvironment(morespecifically,data
interoperabilityacrossdisparatearchitectures)

Rehostandtestimplicationsof differences between resources (e.g., specialized

hardware components) available in the GS/SPF environment and in the IVTEs

Requirements for specific tools and/or devices in the GSDE (to simulate or

replicate elements of the IVTE in the GS/SPF).

This report addresses the interface problems that result from separating the development

and execution functions on different computers. Those problems axe, in effect,

requirements levied on the GSDE for specific elements of support. The primary focus of

this analysis is the requirements placed on the GSDE by the SSTF and SSCC projects.

Following this overview section, Section 2 provides a detailed analysis of the problem,

with references to similar types of problems encountered in other similar ground system

development efforts.

Section 3 describes the development process suggested for software engineering in the

GSDE. It discusses the requirements for CM, software porting and remote compilation,

and integration and test. This process is essentially that which is supported by the Space

Station SSE, although the specific target platforms are not supported by the SSE.

Section 4 discusses ways that the host environment can be made functionally similar to

the target environment. Requirements for a virtual environment are discussed, as are

tools and devices used to simulate the target.

Section 5 describes the prototyping effort that is planned to demonstrate the workability

of software needed to support the GSDE interfaces and to assist in further requirements

clarification. Section 6 describes resources necessary for the performance of the

prototyping effort. Section 7 presents the recommendations from this phase of the
research effort.

1.3 Statement of the Problem

The Mission Operations Directorate at JSC is responsible for the development of ground

support computer systems, the SSTF and the SSCC, for the Space Station Freedom

Program. The software in these systems is being developed in the Ground Software

Development Environment, on a complex of computers and workstations designated the

GS/SPF. The GS/SPF includes resources that are provided by the SSFP SSE. The
GS/SPF includes an Amdahl mainframe, several Rational R1000 Model 300S Ada

CSC/SSD - UHCL/RICIS 3 April 1991

CSC/TR-90/6155

GSDE Interface Study

development computers, and a local area network (I.,AN) with various workstations

(Apollo, MS DOS-compatible, and Apple Macintosh, at a minimum) and some special-

purpose devices attached. This is referred to as the host environment.

Note

The terms host computer and host environment in this

report refer to the computers on which development is

hosted. All of the computers in the GS/SPF--not only the

mainframes--are considered host computers.

The target environrr_nts for this ground system software will be composed of computers,

workstations, and special-purpose devices that differ from the corresponding elements in

the GS/SPF environment. Software will be developed in the host environment and

transferred to the target for integration and system testing. The differences between host

and target will force some transformation and even redevelopment of code. The

separation of functions will also require mechanisms for communications and integration

between the host and target environments. The fact that both environments will be

heterogeneous, distributed systems further complicates the problem.

This study task (and the related prototyping effort) focuses on the interfaces between the

host and target environments. Those interfaces include communications between host

and target, actual transfer of files and command lists, and testing on the target that is

orchestrated from the host. The goal of the effort is to find or develop mechanisms of

GS/SPF-to-IVTE interfacing that will minimize the cost of rehosting software developed
in the GS/SPF.

1.4 Related Documents and References

CAE-Link/Flight Simulation Division, Space Station Training Facility/Ground Software

Development Environment (GSDE) Usage Concepts, 17 August 1990 (briefing)

Campbell, I., "Standardization, Availability and Use of PCTE", Information and

Software Technology, Vol. 29:8, October 1987

Campbell, I., "Emeraude Portable Common Tool Environment", Information and

Software Technology, Vol. 30:4, May 1988

Computer Sciences Corporation, Ground Systems Development Environment (GSDE)

Operations Scenarios, CSC/TR-91/xxxx. February, 1991

CSC/SSD - UHCL/RICIS 4 April 1991

CSC/TR-90/6155
GSDE Interface Study

FederalInformationProcessingStandardsPublication151,Portable Operating System

Interface Standards (POSIX)

Gallo, F., R. Minot, and I. Thomas, "The Object Management System of PCTE as a

Software Engineering Database Management System", ACM SIGPLAN Notices, Vol.

22:1, January 1987

Johnson Space Center/T. Price, Ground Software Development Environment, April 1990

(briefing)

Johnson Space Center/S. Hinson, Ground Systems Development Environment, October

12, 1990 (briefing)

Liu, L-C. and E. Horowitz, "Object Database Support for a Software Project

Management System", ACM SIGPLANNotices, Vol. 24:2, February 1989

Loral/D. Sundermeyer, Space Stations Control Center/System Functional Design

review/Ground Systems Development Environment, 15 November 1990 (briefing)

McKay, C., "Portable Common Execution Environment (PCEE)", UHCL Report

NASA/SSE System Project, CM system for OI-5, 16 August 1990 (briefing)

NASA/SSE System Project/C. Michaels, OI 6.0 DRR Concepts/Configuration

Management, 18 October 1990 (briefing)

Penedo, M., "prototyping a Master Database for Software Engineering Environments",

ACM SIGPLAN Notices, Vol. 22:1, January 1987

Schantz, R., et al, "Resource Management in the Cronus Distributed Operating System"

(abstract and bibliography), ACM Computer Communications Review, Vol. 17:5, August

1987

Stumrm M., "Strategies for Decentralized Resource Management", ACM Computer

Communications Review, Vol. 17:5, August 1987

Thomas, I., "The PCTE Initiative and the PACT Project", ACM Software Engineering

Notes, Vol. 13:4, October 1988

Vinter, S. "Integrated Distributed Computing Using Heterogeneous Systems", Signal,
June 1989

CSC/SSD- UHCL/RICIS 5 April 1991

AUmb.

CSC/TR-90/6155

GSDE Interface Study

Section 2 - Analysis of the Problem

As noted in Section 1.3, the problem addressed here is the development-to-execution

interfaces within the GSDE. The analysis presented in this section characterizes the

interfaces involved and identifies strategies for supporting those interfaces. The

resolution su'ategies and derived requirements for GSDE interface support are

investigated in Sections 3 and 4.

2.1 Ground Software Development Context

There are three major obstacles to the use of a single environment throughout the

software life cycle. First, the target systems (the SSTF and the SSCC) will include

computers that arc not represented in the GS/SPF. Second, the target systems will

include a significant amount of code that is reused from previous systems, for which the

standard SSE-supported SPF does not provide compilers and tools. Third, integration

and test must occur in a secure, controlled facility, while development can occur without

such costly controls physical restrictions. Because of these three obstacles, integration

and testing of the ground system software will make use of target facilities that are

distinct from the GS/SPF. There will be one such facility, called an integration,

verification, and test environment (IVTE), for each of the ground systems. Figure 2-1

shows this configuration.

In practice, the IV&T facilities will probably share some elements with the actual

operational targets. In the case or the SSTF, elements of the IV&T facility will be

delivered as part of the operational system. "While this has some impact on the details of

the GS/SPF to IVTE interface, it does not change the basic requirement for the transition

from development to operations via IV&T.

Because of execution, interface, and performance requirements, SSTF and SSCC ground

software will operate on different types of computers from those used for development.

In particular, a major development platform will be Rational R1000 computers, which

are not suitable for operations. (The Rational computer systems are optimized for Ada

code development and are not cost-effective for general data processing operations).

Other differences will be def'med as system designs and hardware procurements are

completed. Reuse of existing code, which is not written in Ada, will require the use of

other development platforms. These platforms (such as a DEC VAX server with linked

workstations) are, like the Rational, more appropriate for development than for

operations.

Rehosting generally requires changes and modifications that increase the cost of

ownership of the software. In extreme cases, a substantial amount of development (or

redevelopment) occurs in the target environment. This reduces the cost effectiveness of

CSC/SSD - UHCL/RICIS 7 April 1991

CSC/TR-90/6155
GSDE Interface Study

the entire process. The host environment (e.g., the GS/SPF) is typically far more

productive (due to factors like availability, power, and tools complement) than the target.

Integration and testing, on the other hand, can be very expensive if performed on the host

because of the cost of simulating or emulating the elements of the target environment not

represented in the host environment. An example of such emulation is the use of Data

Management System (DMS) kits and the Simulation Interface Buffer (SIB) for

development of SSFP flight software. Software in the SSTF (at least) will make use of

these emulations, among others.

GSDE JcompikDm,etc;
configurat/on mgl

I.AN] GS/SPF

devao_

(R1000, elc)

OADP host I Sl=4Cial Ihardwarecompilecs, ere

I

Host environment (GS/SPF) ----J L Target (integration, verificatlon._...J
and test)

Space Station Ground Software Development Environment (GSDE) I

Fi_u'e 2-1. Ground Systems Development Environment

One basic problem is to find a cost-effective balance between using the high-fidelity

target environment and the high-productivity host environment. The study described in

this report involves identifying strategies and techniques for optimizing the use of the

GS/SPF in developing software for the SSTF and the SSCC. By supporting test and

integration on the host and reducing the use of the target environments, the overall cost

of development can be reduced and greater control exercised over the process. Such

support includes CM, test control, test data analysis, and reporting.

CSC/SSD - UHCL/RICIS 8 April 1991

CSC/TR-90/6155

GSDE Interface Study

In practice, the target systems are likely to be heavily loaded. Shifting the emphasis from

target to host environment can make it easier to add resources to support development.

In general, several basic strategies can be used to achieve this balance of development

between host and target. For example, the host environment can be enhanced, making it

more attractive to developers. Tools (e.g., cross-compilers and target-machine

simulators) can be used to perform simulated target-based testing. The target

environment can be stripped of development tools (e.g., editors, debuggers) to make it

less attractive. Virtual-machine interfaces (e.g., POSIX) can be installed on both target

and host environments to minimize the differences. Some of these strategies are

provided by the SSFP SSE and are already in place in the GSDE.

Software development for the SSTF and the SSCC will take place in the GSDE on the

GS/SPF. The developers of these ground systems, the Mission Systems Contractor

(MSC) for the SSCC and the Training Systems Contractor CTSC3 for the SSTF, will each

have components of the GS/SPF located within their facilities and dedicated to their use.

Administration of the GS/SPF and CM of ground system software will be centralized at

JSC. Figure 2-2 shows this basic configuration.

LAN

development
platforms

(R1000, etc)

GSDE Amdahl li
compilers, etc;

configuration mgt

1
communication_ network

tAN

I.__ SSTF -.-J SSCC ----J

Host (development and CM) environment - GS/SPF

Figure 2-2. Ground Systems/Software Production Facility

CSC/SSD - UHCL/RICIS 9 April 1991

CSC/TR-90/6155
GSDE Interface Study

By using the GS/SPF, the ground systems software developers can take advantage of the

tools and facilities that have been collected and created to boost software productivity.

The GS/SPF provides tools and database support for many aspects of software

development, including the following:

Requirements development and tracking

System and software design

Schedule and performance management

Configuration management

Code development (for Ada code)

Test and integration
Documentation.

Using this environment, developers will be able to capitalize on the availability of

software tools and procedures developed for all of the SSFP. Some of the tools,

particularly Cadre Teamwork and Rational R 1000 computers, have established excellent

track records for improving the productivity of users and the quality of products. The

GS/SPF will provide users with an extensive set of resources, including an Amdahl,

several Rationals, many workstations of several types (Apollo, MS-DOS or OS/2

compatible, Apple Macintosh, possibly others), and network support.

2.2

2.2.1

Host-to-Target Development Requirements

The most common strategy for developing software is to use the same computer(s) for

development and for operations. (This strategy, called self-targeting, also includes using

compatible computers, such as different models of VAX computers). This strategy

requires that the target computer provide adequate development tools such as compilers,

linkers, and debuggers. There are few problems of incompatibility between host and

target machines because they are the same, or at least functionally equivalent. (Even

with this strategy, differences in processing speed or in peripheral complement could

cause problems, but these axe generally minor and easily solved.)

Cross-Development Justification

There are several reasons why functionally different machines will be used for

development and operations. The requirements of the two different uses are generally

quite different: the target computers are selected to meet operational requirements (such

as fast processing, real-time response, small size, or flight qualification), while the host

computers axe chosen to minimize the cost of development. For SSFP ground software.

it is not possible or practical to find one system that is optimal for both sets of

requirements.

CSC/SSD - UHCL/RICIS 10 April 1991

CSC/TR-90/6155
GSDE Interface Study

2.2.2

Additional development costs are incurred whenever software must be ported from one

computer to a different one. In this instance, the difference in requirements (between

development and operations) is large enough to justify the cost of transitioning from host

to targeL Accordingly, different computers have been selected.

The GS/SPF is based on the SSFP SSE and includes a very extensive set of procedures,

tools, and standards for software development. The support provided by the SPF extends

from requirements definition and analysis to configuration management of developed

code. The SPF includes documentation and project management support, an extensive

training and support system, and ongoing development of new tools and capabilities.

This level of support would be impossible to provide for each target environment.

The GS/SPF also includes Rational development systems, which are highly effective Ada

development tools that are not suited for use as targets in real-time applications. It
includes other tools and capabilities (such as Teamwork and Interleaf) that are not suited

to either the SSTF or the SSCC target environment. Conversely, both target

environments require real-time distributed processing and involve specialized hardware

that is not part of the standard SPF complement.

To support integration and test, the special-purpose hardware and target system

computers will be replicated in the IVTEs. For reasons of cost and productivity, as well

as safety and reliability, the IVTEs will be restricted to use only for integration

verification and test. All development will be performed in the GS/SPF, and developed

software will be ported to the IVTEs.

Models of Host-Target Development

The cost of transitioning is dependent on the support provided to the developer for

masking or accommodating the functional disparities. There are several models for

supporting this transition, with varying implications and cost factors.

The simplest model (see figure 2-3), often used in avionics development, uses a bare

machine for the target and performs all code implementation on the host system. Cross-

compilers and loaders are provided by the host computer. Executable images are

downloaded to the target; testing is often performed under control of the host system.

The target computer may be simulated on the host system so that functional testing can

be performed without using the actual target. Such simulators generally provide more

instrumentation (e.g., symbolic debuggers and breakpoints) than the actual target

computer provides.

This model will apply to special-purpose hardware such as communications processors,

which will be identified as the SSTF and SSCC design efforts proceed.

A more complex model (figure 2-4) involves a target processor with its own operating

system and system-level applications (e.g., a DBMS or an inference engine). The host

CSC/SSD - UHCL/RICIS 11 April 1991

CSC/TR-90/6155

GSDE Interface Study

environment is used to create and unit-test code, but the target's compilers and loaders

are used to create executable images for integration test and operations. Some of the

elements of the target (such as external interfaces) may be simulated on the host to

support unit-testing, but the entire target environment cannot be realistically simulated.

I "rawget mn_l* I _ r_

1 _ Test status

Som,_Lre developm,nt p_dorm _

Figure 2-3. Bare-Machine Targeting

Appllcatlo ns _

,_J Target mnflme |

environment

Target (bare machine)

DownloKI, revise,

j _-_pplicaaons i _. __ compile ancl link

I Host system I_ F_

iii librlrv I//.... ._'_ _ ___

"-'d_! Ap_icatlOn$ L__

llbfanr _

-.J I
Target platform

• Figure 2-4. Peer-Machine Targeting

This model may be appropriate when the target is adequately supported and is powerful

enough to support compilation and test. This model makes effective use of the host

environment during early stages of implementation but may get cumbersome,

particularly in terms of CM, during later stages of the life cycle. Changes to applications

(e.g., replacing stubs with actual system calls) are often needed when transitioning from

host to target, Those changes make it difficult even to unit-test modifications on the host

system.

The mainframes and workstations in the IVTEs fit this model. The specifics of those

machines are dependent on the outcome of the OADP procurement.

CSC/SSD - UHCL/RICIS 12 April 1991

CSC/TR-90/6155

GSDE Interface Study

A third model (figure 2-5) involves the use of "virtual machine" software to hide the

differences between host and target. The virtual machine environment (VME) software

is itself hardware specific. It resides on both host and target systems, masking the

differences. This model requires that functionally equivalent compilers be available on

both systems. As with other models, there may be some simulation of the target on the

host, but the VME provides most of the interface.

Down load

=on- =mO,..nO,,nk

environment (VMEI IJ1_ #, /"- _'
I _._ Builcland Te

Sott_am)da_n_t mtlorm

L
TargetVMElibrary t_

_] TargetVME

Target platform "_

Figure 2-5. Virtual Machine Targeting

This model requires that VME implementations exist or be developed for all host and

target computers. The VME may impose a performance penalty on the target, which

may be unacceptable. The most common example of this approach is the use of Unix as

a platform-independent operating system; the POSIX standard defines a virtual operating

system which is intended to make the Unix model more consistent. Another example is

Cronus, which provides an interface definition and supporting software for peer-to-peer

and application-to-data interfaces.

It may be possible to apply this model to some or all of the mainframes and workstations

in the IVTEs. Furdaer study of requirements and available commercial environments, as

well as prototyping of some interfaces, will be used to resolve this issue. Section 4.3

provides further discussion of this issue.

2.2.3 Obstacles to Host.Target

Development

As previously noted, there are problems associated with developing code on one type of

computer for operation on another. Each of the development models described in
subsection 2.2.2 has a different set of problems, advantages, and cost factors. In brieL

those problems include the following incompatibilities:

CSC/SSD - UHCL/RICIS 13 April 1991

CSC/TR-90/6155
GSDE Interface Study

Object-code and addressing

Low-level operating system (OS) facilities (e.g., interrupts)

Peripheral hardware (I/O, network, etc.)

Resources available (e.g., memory)

T'maing(performanceand clock services)

High-level(systemcall)OS services

Libraryroutines(standardlibraries)

Compilers

The characterization and mitigation of each of these problems, with respect to the models

defined above, is discussed in the following subsections.

Object code and addressing. The object code for different processors is, of course,

different. Addressing schemes may also be different in subtler ways; logically equivalent

data structures may exhibit differences in performance due to segmentation and memory

architecture. Most such problems are solved with the use of high-order languages, but

there can be differences (e.g., in hardware arithmetic) that have subtle impacts.

The baxc-machine model may address the problem by simulating in detail the

performance of the target computer. The mixed-machine and virtual-machine models

must rely on precise format specifications and careful record-keeping to mitigate the

problem. Ada provides some support for detailed specification of formats, and some

virtual machines (e.g., Cronus) provide standard formats and conversion routines.

Low.level OS facilities. Many operating systems have program information stored in

specific locations, such as program status word, job control and file control blocks, or

video display memory. These facilities generally cannot be tested except on the target

machine. The software applications that use these facilities can be tested if they are

simulated on the host. This is often the case on bare-machine model systems.

Peripheral hardware. Control of hardware devices that will attach to the target

computer presents a considerable difficulty. These hardware devices include analog-to-

digital (A/D) and digital-to-analog (D/A) converters, communications interfaces such as

Ethernet n'ansceivers and modems, recording devices, display devices, switches, etc. In

some instances, the device may be able to connect directly to the host computer for

integration and testing. In other cases, there may be equivalent devices for both target

and host. In still other cases, it may be necessary either to simulate the device on the host

or to delay testing until transition to the target. (The last option does nothing to reduce

risk; it simply permits testing of other elements of the system).

Resource availability. Even if the host and target axe otherwise compatible, differences

in resources may pose an obstacle to integration and test. Main memory size is an

obvious example; development machines often require and have more available main

memory than do targets. Disk space and performance, and math coprocessors, axe other

examples of critical resources. These may not affect the logical construction of

application programs but may impact the integration and test of applications. (For

CSC/SSD - UHCL/RICIS 14 April 1991

CSC/TR-90/6155

GSDE Interface Study

example, a very real concern for Space Station flight software is that applications that

work in a development environment may not fit in the memory available on a Standard

Data Processor.) Resource limits such as these must be identified for each host-target

pair and may be different for different applications depending on requirements. Once

identified, checks must be made to ensure that application software uses only resources

that will be available on the target.

Timing considerations. In a real-time environment, the availability of support for

timing and clock services is critical. This is one area in which the target is more likely

than the host to have the necessary facilities. Interactions among task elements may be

difficult to test in the host environment if the target's real-time environment cannot be

accurately simulated. Clock and timer services provided by the target may be
unavailable in the host, or may be available only to the system supervisor. Planning is

necessary to ensure that timing considerations are addressed during development.

Benchmarking of the target may be needed to establish simulation parameters on the

host.

High-level OS services. The services that are readily accessible to high-order languages,

such as f'fle operations and interprocess communications, are more or less platform

specific. Generally, they are straightforward and easily simulated. If the operating

system is standardized (e.g., POSIX-compliant) the simulation is made even simpler.

High-level system services present an obstacle to cross-development, but one that is

easily addressed (e.g., by writing interface routines to translate from one context to

another. This process may be time-consuming but is technically straightforward).

Library-based services. In addition to the services provided by the platform OS, there

are support libraries for specific compilers, data base systems, network, services, etc.

These libraries are often duplicated on both host and target, but the duplications are of

variable fidelity. Experience with Ada support libraries on different systems, for

example, has shown that careful testing is needed to ensure functional equivalence in

operational settings. Past history and good recordkeeping are valuable in assessing the

magnitude of this obstacle to cross-development.

Compilers. The differences among various CPUs and memory systems are largely

camouflaged by the use of common high-order languages. However, compilers
themselves can introduce differences, especially when produced by different vendors.

The Ada compiler validation process tends to reduce such problems for Ada, but does not
eliminate them. The Federal Aviation Administration's (FAA) Advanced Automation

System (AAS) has identified many compiler differences, as noted in section 2.2.4. As

with library service differences, experience and recordkeeping are important to

addressing the problem.

CSC/SSD - UHCL/RICIS 15 April 1991

CSC/TR-90/6155
GSDE Interface Study

2.2.4 Experiences with Cross-Development

In working with NASA, CSC has considerable experience in cross-development, using

all three models of host-to-target development. Examples of such cross development,

drawn from CSC's experience, are discussed below.

Autonomous Attitude Determination System. Flightcomputers are generallytoo

small tosupportcompilersand development tools,and aretypicallysupported with host

development systems. This configurationmatches the "bare-machine"model. Typically,

the softwareforan onboard computer iswrittenand cross-compiledor cross-assembled

on a general-purposecomputer (suchas a VAX) and downloaded tothetargetfortesting.

The targetcomputer generallyremains connected tothehostfortestcontrol,testdata,

and perhaps simulated data.

An example of this class of cross-development was the Autonomous Attitude

Determination System (AADS). The target was a 16-bit Intel processor (not flight-

qualified); the host was a VAX 780. The AADS system was first constructed on the

VAX and functionally tested, then cross-compiled for the target and downloaded.

Support software developed on the host included a full data simulation system, a test

harness, and a ground command simulator. The simulation system served the purpose of

the simulation interface buffer in the SSFP, providing all of the signals that the AADS

would receive if it were actually on board a satellite. (It was generalized from dynamics

simulators used for testing mission-specific onboard computers). The test harness

provide the controls for transmitting data and retrieving results, with facilities for

adjusting the time step and for restarting the simulation. The ground command simulator

provided the operator interface (distinct from the test operator) to exercise the AADS.

The bulk of development was performed on the host, with testing being done on the

target.

Solar Maximum Mission Attitude Determination. NASA's operational ground system

computers are heavily committed to operations in some instances, and cannot provide

adequate resources for development of new systems or maintenance of current systems.

Since many of these systems involve highly specialized equipment (operator consoles,

orbit track displays, etc.), development must proceed with limited access to parts of the

system. This was the case during the development of the Solar Maximum Mission

(SMM) attitude ground software at Goddard Space Flight Center.

The operational system used a specialized console interface program called GESS

(Graphics Executive Support System), which was closely tied to the display devices and

operating system of the operations computer system. To support development offline, a

PDP-11/70 computer was used to emulate the IBM 360/95 target environment. The

differences between Digital Equipment Corporation (DEC) and IBM FORTRAN were

mapped out, and many utility routines that had been developed for the target were

CSC/SSD - UHCL/RICIS 16 April 1991

CSC/TR-90/6155
GSDE Interface Study

rewrittenfor thehost. TheGESSprogramwassimulatedon thehost,usingVT-100
terminalsassubstitutesfor 2250displays.

After developmentandfunctionaltesting,thecodewasportedto the target. Changes

were needed where the GESS simulation was not a true copy of the target version, and

where language and machine architecture differences caused problems. Final integration

and redevelopment were performed on the targeL which did have a full complement of

development tools. The developed code was never returned to the host after being ported

to the target. (This is typical of traditional cross-development practices).

Advanced Automation System. Another example of cross-development (although not a

NASA experience) involves developing software on Rational machines for operation on

IBM mainframes. The Advanced Automation System being built for the FAA is

currently being developed in Ada. Rational R1000 development computers are used for

initial code design and development. The code is functionally tested and then recompiled

on the target with the Telesoft Ada compiler. The system has both real-time and fault-

tolerant elements, and requires extensive integration and system testing.

It has been found that Ada code developed on the Rational for the IBM system does not

perform exactly the same on host and target. The differences between the Rational

version of the library and the Telesoft library are enough to cause problems in this

particular environment. Because of the superior performance of the Rational compiler,

the developers make every effort to complete development on those computers; but

integration must still be performed on the target. When software is moved back to the

Rational for software fixes, configuration management is compromised.

2.2.5 Implications of Different Models

With the bare-machine model, the host computer must provide extensive simulation and

cross-development facilities. As with the AADS example, the target computer is only a

small portion of the total integration environment. The test framework and whatever

interface support is required must be built in the host to enable the tests to be performed.

If the target itself can be simulated in the host (a common condition with many small

bare computers), the development process can be streamlined very well. As more of the

target environment is replicated in the host, the cost and risk of cross-development is

greatly reduced. Of course, the cost of reproducing the target environment must be
evaluated.

When the target machine is of the same class as the development computer (i.e., both are

general purpose systems, the peer-machine model), it is not practical to replicate one

computer system in another. Compilers and standard libraries can minimize the

differences, but (as with the SMM example) there may also be a need to duplicate

special-purpose hardware or software to perform even unit-testing. The higher

productivity of the host environment is presumed to more than offset the cost of

CSC/SSD - UHCL/RICIS 17 April 1991

CSC/TR-90/6155
GSDE Interface Study

redevelopmentafterporting. (In theSMMexample,thebenefitwasthemuchgreater
availabilityof thehostsystem).

Onerisk of using this approach is that, if changes are made to specialized software on the

target, those changes must also be made to the host emulation. This increases the cost of

sustaining engineering.

Another risk is that anomalies may be reported in the developed code that are in fact due

to errors in emulation. Experience with using simulators to test operational software (a

common practice) shows that apparent errors in the operational software are often due to

simulator bugs instead of errors in the operational code. Other problem reports can stem

from less-than-complete fidelity in the simulation.

The SMM example actually demonstrated some aspects of the Virtual Machine

Environment (VME) approach to cross-development. The GESS software on the target
was created to isolate operational software from some characteristics and machine

dependencies on the target. Instead of developing software for the actual display devices

and memory structures, code was developed for the GESS virtual machine. By

replicating that capability on the host, it was possible to develop "machine-independent"
code.

2.3 Strategies for Cost-Effective Development

The incentive for maximizing the use of the GS/SPF--and delaying as long as possible

the shift to the IVTE--is that support for dozens or hundreds of developers can be

provided more effectively and at less cost in the SPF. The IVTE is expensive and is not

conducive to high productivity. The GS/SPF can more readily accommodate large

numbers of users, more and better tools, and better integration of tools. The SPF can

also be expanded more easily than can the IVTEs. The problem is to mask and contain

the inevitable cross-development incompatibilities so that GS/SPF-based development
can be effective as well as productive.

Two basic, mutually reinforcing strategies can be followed to maximize use of the

GS/SPF, and thereby reduce the overall cost of ground software development. First,

tools and procedures can be put in place to simplify the cross-development process and
encourage development in the host environment. Second, tools and simulations can be

installed in the host (and possibly in the target) to minimize the differences between host

and target. The first strategy involves the process of cross-development; the second

strategy directly affects the design and implementation of application software.

Both of these strategies must be tailored to the systems being developed. The
development process strategy must encompass the use of the Amdahl and Rationals as

well as various network-interfaced workstations. The applications strategy must

CSC/SSD - UHCL/RICIS 18 April 1991

CSC/TR-90/6155

GSDE Interface Study

accommodate the specific requirements of the two systems as well as the expected use of

existing code.

Section 2.4 discusses the characteristics of the various development and operational

environments and describes the process of assembling the requirements to tailor these

strategies. Sections 3 and 4 discuss the strategies themselves.

2.4 Ground System Development

This section describes the different computing environments that were reviewed to derive

interface requirements for the GSDE.

2.4.1 Ground Support Development

Environment

The GSDE system is a distributed system with users of the system networked to a central

facility located in Building 46 at JSC. Each of the users have development computers

within other facilities. Figure 2-6 shows the overall architectural layout of the GSDE.

with logical communications interfaces shown by the arrows. This layout includes an

overview of the portions of the GSDE that are in the facilities of the TSC and MSC

contractors.

Since the GDSE is the central portion of the development environment, it will be the

central repository for all developed software. It will maintain a centralized configuration

control accounting and be a centralized reporting point for software testing reports.

Figure 2-7 depicts the functions performed by the different elements within the GDSE.

Software developed within the GS/SPF will be ported to target environments for

integration and test. This interface (from GS/SPF to I&T target) is critical to the success

of the planned use of the GS/SPF as the central control point for ground systems software

development. This GS/SPF to IVTE interface must be transparent to the developed

software to reduce the need for development activities on the target machines in the

IVTEs.

CSC/SSD - UHCL/RICIS 19 April 1991

CSC/TR-90/6155

GSDE Interface Study

MSC COMPILESERVERt

DEVB.OPMENT
WORKSTAll(_S 4l------a

CONTRACTORSITE

MSC IV'I"&E ?_

:- /

MSC IVT&E |

I BUILDI_ 30A /

GSDE HOST

AMDAHL

BUILDING 46

TSC RATIONAL

TSCCONTRACTOR
SITE

i___ TSC DEVELOPMBCr
WORKSTATIONS

CONTRACTORSITE

' " I TSC IVT&E

\ "1 WORKSTAGI_SS

/ BU,LDIN S 1
UNOL-OOI

KEY:

ARROWS SHOW LOGICAL (NOT PHYSICAL)COMMUNICATIONS PATHS
CONNECTIONS BETWEEN AMDAHL AND IVTE WORKSTATIONS ARE NOT
YET FULLY DEFINED OR VERIFIED.

Figure 2-6. GSDE Communications Architecture

The target machines are not yet specified, except in general terms (e.g., performance

estimated in millions of instructions per second (MIPS), support for specific

programming languages). Based on anticipated requirements, it seems probable that the

target systems will include:

Mainframe computers and midrange computers from the set of IBM 370 or 390

seriescomputers, DEC VAX computers, or systems from Control Data

Corporation or from Unisys Corporation.

Workstationsbased on the Unix operatingsystem,such as Sun (Sun OS), Apollo

(Domain), IBM 6000 (AIX),or DEC VAXstation (UItrix).

• Masscomp workstations

• Special purpose hardware (unique to each target)

CSC/SSD - UHCL/RICIS 20 April 1991

CSC/TR-90/6155

GSDE Interface Study

COMPILE SERVER
MSC CONTRACTOR SITE

CODE DEVELOPMENT
MSC DEVELOPMENT-LEVEL
CONFIGURATION CONTROL

TSC RATIONAL
TSCCONTRACTOR SITE

ADACODE DEVELOPMENT
TSC DEVELOPMENT-LEVEL
CONFIGURATION CONTROL

MSC DEVELOPMENT
WORKSTATION8
CONTRACTORSITE

ADA CODE DEVELOPMENT
TEST REPORT RECEPTION

GSDE HOST AIdDAHL
BUILDING411

AOA AND OTHER CODE

DEVELOPMENT

CONRGURATION CONTROL

CENTER

TEST REPORTING CENTER

UNIT TEST SUPPORT

DEVELOPMENT
WORKSTATIONS
CONTRACTOR SITE

ADA CODE DEVELOPMENT
TEST REPORT RECEPTION

MSC IVT&E

BUILDING 30A

CODE TESTING AND INTEGRATION
TEST REPORT GENERATION

Iv'r&E
BUILDING5 OR 46

CODE TESTING AND
INTEGRATIONTEST REPORT
GENERATION

2.4.2

Figure 2-7. GSDE Functional Architecture

Once the computer systems have been selected as a result of the OADP procurement, the

requirements for interfaces to the target systems will be specified in detail.

Space Station Training Facility

Software development for the SSTF will be a distributed process. The bulk of the

software will be developed on workstations (Apollo) and Rational development hardware

and software located in the Link Flight Simulation Building. These development

machines will be connected to the GSDE host located in Building 46 at JSC. Figure 2-8

illustrates this configuration, and shows the allocation of functions to different TSC

facility components.

NASA intends that software developed at the CAE-Link facility will be controlled on the

GSDE host during the development process before it is certified for operations.

CSC/SSD - UHCL/RICIS 21 April 1991

CSC/TR-90/6155
GSDE Interface Study

" CODE REPOSITORY
" CONFqG.CONTROL
" UNIT TESTING
" TEST REPORT CENTER
* C CODE DEVELOPMENT
* FORTRAN DEVELOPMENT
" ADA TRAINING
° SYSTEM ANALYSIS

I

4,

"TMm

• DOCUMENTATION

["I'SCDLn/ELOPIB.NTRLE SERVER

I
TS¢

COMPILE
SERVER

• CC_E DEVELOPMENT

• CONRG. CONTROL

SOFI_MIE 0EVlCOIIMBCr t._

• DOCUMENTATION ' COOE DEVELOPMENT " CODE TEST

Figure 2-8. TSC Development Facilit},

The target machines for the developed software will be the IVTE for the SSTF located in

Building 5 at JSC. The IVTE hardware is expected to be identical to the operational

hardware (in some cases, the IVTE target computers will become the operational

computers).

The SSTF IVTE will include support for SSFP SDPs and other specialized devices,

including "aural cue" (voice data processing) systems and visual scene processing

hardware. These items, along with other special-purpose devices in the SSTF IVTE, will

be identified as the SSTF design progresses.

The software for the SSTF is largely a complex, highly distributed, real-time event-

driven simulation and control system. The software must perform simulations (e.g., of

the Space Station environment, of the modules, of the onboard computer systems) in real

time to provide a highly accurate emulation of the real Space Station. The training

CSC/SSD- UHCL/RICIS 22 April 1991

CSC/TR-90/6155
GSDE Interface Study

facility needs the ability to model the various stages of construction and assembly, and so

must be flexible and reconfigurable.

2.4.3 SSCC Software Development

Software development for the SSCC will be a distributed process. The bulk of the

software will be developed on workstations (Apollo) and DEC VAX servers, and

possibly with Rational development hardware and software, located in the LAC building.

These development machines will be connected to the GSDE host located in Building 46

at JSC. Figure 2-9 illustrates this configuration, and shows the allocation of functions for

components of the development facility.

As with SSTF software, NASA intends that software developed at the LAC facility will

be stored and controlled on the GSDE host.

The target machines for the developed software will be the IVTE for the SSCC located in

Building 30A at JSC. The IVTE hardware will probably not always be identical to the

operational hardware.

The SSCC will include special purpose hardware for communications processing, for

large-scale visual display, for recording, and for communications link management.

These devices will be specified during the SSCC design process.

The software in the SSCC is primarily oriented toward receiving, processing, displaying,

and capturing real-time telemetry data from the space station, and managing uplink data

to the space station. In general, it does not include closed-loop real-time processing,

although some of the communications equipment may have such constraints. The intent

is to provide information to operators for assessment and action. The SSCC software is

characterized by high data volumes, complex processing, and human interaction

performance goals.

Unlike previous manned space flight control centers, the SSCC will be operational full

time for the life of the Space Station Freedom. The SSCC must therefore be highly

reliable and fault tolerant, with appropriate load-sharing and failover capabilities. The
software architecture will have to reflect this consideration.

CSC/SSD - UHCL/RICIS 23 April 1991

CSC/TR-90/6155

GSDE Interface Study

"COOE RB=OEITORY
"TESl"REPOR11NG
"CONFIG. CONIROL

"UNITTES11NG _,

AlgAl4. "C(_IRG.CONTF_(_4..

!
I ISOLATION_A_'r(_.l

• COOE INTEGRATION
"COOE TESTING
"TEST REPORTGENERATION

COIImJleCATIONS
OISTRIBUTION
PANELS

SOFTWAflE0EVELOPNE_ IN/

d_ d_ I 4_ 4L

I! 1F 1P If

N_.LO S8¢C UNIXrr_

RATIONAL WS I TARGET OEV.

• CODE DEVELOPMENT
• CONFIG. CONTROL

* CODEDEV. "CODEDEV. ' CODETESTING "CODE DEV,

Figure 2-9. MSC Development Facilit 7

2.5 Requirements Collection Process

This section describes the process used in collecting and analyzing data for this study.

Data was collected through a series of interviews with personnel responsible for the

various pieces of the GSDE, through reviews of documents and presentation materials,

and from comments on the preliminary version of this document. The analysis of the

information involved correlating and tabulating different sources of information, and

CSC/SSD - UHCL/RICIS 24 April 1991

CSC/TR-90/6155
GSDE Interface Study

then developing scenarios to link interface operations to the hardware and software
architecture of the GSDE.

It is important to note that the GSDE is still being defined, with changes being made to

reflect the overall SSFP restructuring activity. The basic operations identified in this

study will be performed one way or another (e.g., compilation, testing, integration) but

the interfaces and specific procedures are likely to change in detail. One such change is

the expectation that the SSCC will be built without the use of the Rational Development

Facility, on the basis that most developed software in the SSCC will be derived from

existing, non-Ada source code. This report attempts to reflect such changes, but does not

attempt to describe requirements at too specific a level of detail.

Some of the hardware and software tools to be used for the development of ground

systems software have been purchased and are in place within the building 46 facility.

The data collection process has involved:

• defining the general structure of the SSTF and SSCC

mapping the development of the necessary software onto the elements of the
GSDE, and

identifying interfaces where software and control information and status

information will have to be communicated from one system to another.

The obstacles to smooth communications and transitions were identified in general and

were discussed with representatives of the TSC and MSC contractors.

The data collection process also involved reviewing various distributed.computing

support environments to identify problems that are likely to be found. The examples

examined ranged from conceptual analyses to actual, commercially available

environments. On the basis of these researches, anticipated interface problems were

identified and discussed with TSC and MSC personnel.

CSC/SSD - UHCL/RICIS 25 April 1991

CSC/TR-90/6155
GSDE Interface Study

Section 3 - Development Process Interface Issues

This section discusses the standard software processes for development and configuration

management, and investigates the problems that result from cross-development. This

section also discusses various issues within the GSDE (including the SSTF and SSCC)

that impose added requirements on the use of this standard process. The normal flow of

development is analyzed to expose issues that might hinder this flow.

3.1 Standard Software Process

The process of developing software in the SSE-supplied environment is described at

length in SSE documentation. Specific adaptations for ground software development and
for the SSTF and SSCC hardware environments are documented by the TSC and MSC

contractors, respectively.

The SSE is designed for development on one system with targeting to one other specific

platform--the Standard Data Processor. To support this cross-development, the SSE uses

actual target machines (DMS kits) and simulation support (a SIB). Ground software

development will use some of the same strategies, but has a much wider array of

potential targets ranging from mainframes to special-purpose programmable devices.

This development process, for the most part, matches the "peer machine" model of cross-

development as defined in Subsection 2.2.2. In the following discussion, areas where the

VME approach might alleviate problems are pointed out.

In order to maintain control of the process, cross-development in the GSDE will make

use of code management and configuration control services in the GS/SPF for all code,

including code that has been ported to the IVTE. Figure 3-1 shows the general sequence
of activities.

The implementation process includes the following basic steps:

Create or adapt source code
Build host-based executable files

Perform unit testing on host

Create target-build scripts

Build executable files on target

Perform integration testing on target.

The first four steps are performed entirely in the host environment. The last three steps

involve both the host and the target. Figure 3-1 shows the procedures in sequence

clockwise from upper left.

1NT[NTIONt_LLTBL_(I_

CSC/SSD - UHCL/RICIS 27 April 1991

CSC/TR-90/6155

GSDE Interface Study

tilt

CSC/SSD - UHCL/RICIS 28 April 1991

CSC/TR-90/6155
GSDE Interface Study

Create source code. Working from design information and/or existing code, the tools

in the host are used to create application software source code. The presumption is that

all Ada code will be developed on Rational systems, using the incremental compiler,

Code Management and Version Control (CMVC) system, and other tools as needed.

Non-Ada code (FORTRAN and C) will be developed on workstations or on the GS/SPF

Amdahl. Reusable code will be placed under configuration control (if not already

controlled) and included in the application source files. Configuration control is

essentially at the level of the individual developer or development group.

In cross-development, the developer must be familiar with both the host and the target

compilers and support tools. The VME approach would reduce the need to learn two

different systems to develop software for just one.

Along with the source code, scripts will be created to control the compilation and linking

of the application software. These "build scripts" will serve as module reference lists,

and will be the basis for target-build scripts to be created later. These scripts may be

used as lists for code-reading and certification as well.

Build host-based executable files. Syntactical and interface accuracy will be verified

by compiling the source code on the host and linking it with system support files. The

code is still controlled at the developer level. The host environment editing system is

used to make any changes to the source code and build scripts. The code must be

designed to work on the target, but must be compilable on the host. If there are a variety

of target environments, this can be difficult to provide in any one host.

Perform unit.testing on host. Still in the host environment, executable files are unit

tested using data sets designed to exercise as much of the functionality as possible.
Because the host environment does not include all of the interfaces and characteristics of

the target, some elements will need to be stubbed out or ignored. Some of these target-

only features may be simulated on the host, permitting functional testing to be

performed.

A VME approach to supporting cross development would minimize the number of
different features to be simulated. Due to the real-time nature of the problem, the

performance impact and significance of this approach must be evaluated for each
interface.

A common way of performing unit tests is to establish an executable image of part of the

system with stubs for incomplete segments and then to plug in new components for

testing in place of stubs. The developing subsystem executable image serves as a test

framework and ensures that intermodule interfaces get heavily exercised.

The feasibility of performing interprocess and interprocessor communications testing

depends on the level of simulation and support provided in the host. Mechanisms for

providing such support are discussed later in this report.

CSC/SSD - UHCL/RICIS 29 April 1991

CSC/TR-90/6155
GSDEInterface Study

Note

The following three items are discussed in more detail in

the form of scenarios in the study report Ground Systems

Development Environment Operations Scenarios.

Create target-build scripts. The scripts needed to perform compilation, linking, and

testing on the target are typically created by modifying the scripts used in the host

environment. The Rational Ada Development Facility has the capability of building such

scripts for certain target processors. The requirements and characteristics of the target-

machine compilers and linkers must be understood in order for these scripts to be built.

One of the questions involved in planning the target-build process is how much object

code is retained on the target. The cleanest way to ensure consistent, repeatable testing is

to recompile everything that is not part of the target operating system. In practice, some

large systems take so long to compile that total recompilations are to be avoided. This

requires careful recordkeeping so that the scripts created for target-building can reliably
ensure that all software objects are current.

The target-build scripts themselves are created with editors or special utilities in the host

environment. They are subject to the same level of configuration control as the source
code and test data.

Build executable files on the target. This step mirrors the host-build process of

compiling, identifying, and correcting syntactical and interface errors and then

rebuilding. The source code is resident on the host and is transmitted (along with the

target build scripts) to the target machines. Compilation and linkage reports are returned

to the host environment where any necessary changes to the source code are made. The

changes needed for compilation on the target may be incompatible with the host

development system (e.g., language-sensitive editor, compiled unit library), in which

case the source code must be stored as text. Successful compilations and links produce
object files which axe returned to the host for storage.

Depending on the target environment, the object files may also be retained in the target

for use in subsequent compilations. The main requirement is that the target environment

must support the use of a single instance of an object anywhere in the distributed target.

This requirement ensures that outdated files are not left sitting where they might be
inadvertently used.

In any case, the objects will be stored on the host, and can be downloaded along with

source code, to facilitate system building without massive recompilation. Configuration

control remains in the host. If more than one developer has access to a target machine

(as is probable), configuration control must be elevated above the developer level.

CSC/SSD - UHCL/RICIS 30 April 1991

CSC/TR-90/6155
GSDE Interface Study

Perform target-based testing. Executable images and test scaffolding are either

downloaded from the host or loaded from the target object library. Test reporting

software is included in the scaffolding so that tests can be controlled and evaluated from

workstations in the host environment. (Some types of tests, particularly those involving

hard real-time constraints, may not be compatible with this procedure. Those tests will

be performed directly on the target.)

The outcome of the testing is reported, in real-time or as test log files created during the

test, to the developer in the host environment. Any changes necessary to the source code

or test data and scripts are made in the host environment. Configuration control stays in

the host, even when testing has shifted to the target environment. This ensures that all

related development can take advantage of the most up-to-date version of the software.

3.2 Distributed Configuration Management

A major characteristic of software development in the GSDE is that CM must deal with

files that are created on several different kinds of machines, providing appropriate levels

of control for each stage of development. Before software is delivered for central

control, it must be tracked and controlled at the level of developer, development team, or

test organization. Following delivery, control will be centralized with provisions for "in

use" copies to be moved around the GSDE.

These two stages of control are discussed below.

3.2.1 CM During Code Development

When code is first created, it will be controlled on the machine used for its creation. For

Ada code, that generally means one of the Rational R1000s. For FORTRAN and C code,

the development machines will generally be workstations. The source code control tools

on each machine will be used to control and track the necessary files. At this stage, there

is no need for CM per se because there is only one version of the source code. That

version is under the control of the originator.

For tracking purposes, the module lists developed during detailed design will serve as

control lists to identify the family of fries associated with each module. (The "family of

files" may include build scripts, test scaffolding and data, primary and included source

files, and package and body files.) These lists will also be used in status accounting and

for quality assurance (e.g., certification of peer review).

Most developers make use of the available CM tools to track their own work, so the tools

must be available at the individual workspace and session level. The files are not placed

under official CM, however, until they are delivered or provided for others to use and

test.

CSC/SSD - UHCL/RIClS 31 April 1991

CSC/TR-90/6155
GSDEInterface Study

3.2.2

Oncea moduleis published,controlpassesfrom thedeveloperto theteamleaderor
groupsoftwareconfigurationmanager.Theactualfiles will beplacedin group-or
project-leveldevelopmentlibraries,and(typically)checkedbackout to thedeveloperfor
refinementandtesting. Thedevelopment library can be a single, centrally controlled

disk store, but may also be a distributed, logically integrated set of storage facilities.

The critical aspect of CM is that controlled objects arc not changed without proper

approval and recordkceping. If that goal can be met with a distributed development

library, the cost of CM (and the impact on developers) may be considerably reduced.

CM extends to source f'tles and to all object fries created from the source code. Since a

given object f'de may be needed in several places at once (by different developers on

different machines), there is some risk that a fully centralized library system could
become a bottleneck.

On the other hand, if a distributed library system is used, there is danger of inconsistency

and of outdated versions of files being used. One of the areas of investigation of this

study effort is the availability and dependability of procedures for distributed access and
control.

Another area of concern is object naming and name-space considerations. If an object

module (under CM) is required for testing, the distributed system should be able to

determine where that module resides. (There is little sense in downloading a large object

library from the main storage facility if the object is already resident locally. When

development is geographically distributed, the cost and time of substantial downloading

becomes even more significant.) Objects under control should be uniquely named and
identifiable throughout the distributed environment.

This concern is also an issue when it comes to deleting superseded modules from local

storage. If each version and each copy of a module is identifiable, the process of purging

outdated files is more predictable and reliable. This study effort will consider approaches

to establishing system-wide naming procedures. Both automated and procedural

mechanisms (e.g., system-wide naming conventions) will be considered.

The final GSDE Interface Study Report will detail findings in this area.

Post-Delivery CM

Once a module has been delivered for operational use (or possibly for acceptance
testing), it is placed under central CM. The source code and all associated files will be

stored and controlled on the GS/SPF Amdahl. As far as practical, object files created

from source code will also be stored centrally, fThis applies only to target-built object

modules, not to any host-built object code that may be retained on the development
machines.)

CSC/SSD - UHCL/RICIS 32 April 1991

CSC/TR-90/6155
GSDE Interface Study

Thisstudyeffortwill investigatemechanismswherebytheRationalCodeManagement
andVersionControlsystem(CMVC) canbeusedto managefilesstoredon theAmdahl.
TheRationalAdaDevelopment Facility provides an effective environment for managing

source files, object files, and dependencies, all very important to effective project-wide

control. The cost and feasibility of such a shared-function system (Rational control,

Amdahl mass storage) needs to be determined.

The Space Station SSE includes some mechanisms for integrating the Rational-based

development CM with the formal Amdahl-based CM system. These mechanisms axe

designed to ensure that when a subsystem is returned to the Amdahl after use (and

possible modifications), any (all) changes are detected and permitted only with an

authorizing change instrument. This interaction provides change control, but does not

take advantage of the Rational's incremental compilation scheme.

The biggest advantage to using the Rational for CM is the avoidance of unnecessary

recompilation. By keeping track of dependencies at a relatively low level, the Rational

can determine when changes in one unit require recompilations of other units. Without

such dependency information, a change in one unit can ripple through a system requiring

massive recompilation that may not be required by the actual change. Since such

recompilations may take hours or days for large software systems, the savings can be

significant.

The potential problems of having a Rational R1000 become a CM bottleneck must be

evaluated to determine the viability of this approach. Section 5 describes a plan for

resolving this issue.

3.3 Implementation Status Reporting

Several issues need to be resolved within the GSDE so that its role of supporting

distributed development for the MSC and TSC can be accomplished. The issues

discussed in the following paragraphs were discovered during the requirements

gathering. Some of the issues are targets for prototyping. Plans for prototyping these
issues are discussed in Sections 5 and 6.

3.3.1 Test Status Reporting

The first major issue is the reporting of test results from the target machines back to the

development environment. This means that the two target "areas" (Building 5 and

Building 30A) would report back to the GSDE test reports. This is complicated by the

fact that the development of the software tested could be on any number of machines

within the distributed development environment. It has not been determined whether this

CSC/SSD - UHCL/RICIS 33 April 1991

CSC/TR-90/6155
GSDEInterface Study

reportingwill berequiredto bedonein realtimeor whether the requirements can be

satisfied with batch process reporting.

The question becomes one of "where are the results reported?" The fast suggested

resolution to this issue is to report to the Amdahl using batch processing techniques. At

this time (the users are still defining requirements) the need for real t_ne reporting has

not been established. In addition, there have not been any requirements to provide

reporting to development workstations or to the Rational development environment.

The second suggested resolution is to make reports back to the development workstations

that are involved in the testing. This would require that the reporting be done in real

time, so that testers would be able to correlate results with the tests they are conducting.

At present there are no suggested software candidates for meeting this requirement.

Operational procedures for test status reporting and data requirements for CM of test

results are discussed in the GSDE Operations Scenarios report noted in section 1.4.

3.3.2 Process Status Reporting

The second interface issue in this area involves controlling and reporting on the status of

software which is compiled and integrated on the target system. Source code,

commands, and possibly object code are downloaded to the IVTE for compilation and

load-image generation. The GS/SPF must be able to request and/or receive status reports
on the process. The developer must be able to verify, from the GS/SPF, that the build

process has completed successfully. The GS/SPF must be able to determine what object

code and load images (if any) reside in the IVTE, and what versions those files represent.

The GSDE Operations Scenarios report discusses procedures and data requirements

reporting on and controlling the software integration and test process.

One approach to this problem is to use a global naming- and object-management process

to identify and locate all objects (typically, files) in the GSDE. Cronus is one such

management process, and was briefly investigated in this context. A plan for a more

detailed investigation is presented in Section 5.

3.4 Software Transparency

It is important that software developed within the distributed GSDE be transportable to

the target environments with minimal additional development work being done on the

target machines. In addition, it is important to minimize the need to simulate target
machines within the development machines (at best there would be no need to simulate

CSC/SSD - UHCL/RICIS 34 April 1991

CSC/TR-90/6155

GSDE Interface Study

the target). Although this is an issue that will be detailed in the final report there are

some preliminary findings that suggest methods for resolving some or all of this issue.

The first finding is that there may be candidates for a distributed OS that will allow

software development on one machine to be compiled and linked on another machine

with little or no "redevelopment" on the target. Cronus is such a distributed OS that is

being investigated.

The second finding is that there may be development cross-compilers that will allow

some transparency between machines.

The third finding is that there may be some methods for developing software that will

reduce the amount of "redevelopment". These too are being explored.

The issue of software transparency will be solved only if detailed knowledge is gathered

about both the development and target environments. This knowledge will spawn the use

of target emulations within the development environment, methodologies for reducing

software/machine dependencies, and new technologies for making code more transparent
to the machine.

3.5 General Issues for SSTF Software Development

As with the GSDE as a whole, the SSTF development environment (a subset of the

GDSE) has specific issues that need to be reviewed. These are issues of multiple

languages, multiple target machines, and IVTE machines becoming operational

machines. The following paragraphs will describe the issues involved and any

suggestions for further study in search of a resolution.

3.5.1 Multiple Languages in the SSTF

Although the majority of the developed code will be developed in Ada, there will be two

sources of non-Ada code. The first will be code that is procured as part of some

subsystems that will not be developed within the GSDE (e.g., image generation

equipment, aural cue equipment, some signal conditioning equipment). The other source

will be "carry over code" from the other existing simulators (e.g., Shuttle Mission

Simulator, Shuttle Network Simulator). For cost and schedule reasons, it will not be
desirable to recode these sources in Ada.

There may be value in developing bridging software to integrate the carry-over code with

the new, Ada code. The POSIX interface prototype is intended to support such research

and development.

CSC/SSD - UHCL/RIClS 35 April 1991

CSC/TR-90/6155
GSDE Interface Study

Because of the multiple languages to be used and developed, the TSC/SSTF portion of

the development activities within the GSDE will require a development system that goes
beyond the Rational environments. Presentation materials from the TSC contractor

indicate that much of the non-Ada code that is developed or modified (modified from

another source such as is the "carry over code") will be developed or modified on

workstations, on the Amdahl, or in the IVTE platforms.

Further definition of the SSTF need for multiple languages will reveal whether or not

this non-Ada code can be produced or modified within the strict confines of the GSDE.

If it cannot be developed within the GSDE, the issues of configuration control and test

reporting become complicated.

3.5.2 Multiple Types of Machines for SSTF
IVTE

Many of the target machines that will be used by the SSTF will be procured under a

center-wide bid for computational equipment (OADP Contract). At present it is not

known which vendor will win the contract or exactly which machines (along with OSs

and available COTS [commercial off-the-shelf] tools) will be selected. This issue makes

requirements gathering difficult. However, important information is available.

There will be at least three different "classes" or "types" of platforms that will be targets

for the SSTF portion of the GSDE. The fast will be computers that are acquired under

the OADP Contract. These machines will have the ability to run the selected SSE

standard Ada compilers. The OSs of these machines will be required to support a high

degree of code transparency between them. The second "type" of machine will be those

that are acquired outside of the OADP. These machines will be part of subsystem

procurements (image generation, simulation interface buffer, etc.). These machines may

or may not meet the same requirements as the OADP machines. Their OSs may or may

not support the selected Ada and non-Ada compilers. The third class of machines are

bare machines which are special purpose in nature and will not have an OS. These

machines will be procured or built by the TSC contractor (aural cue, signal conditioning
equipment, etc.)

With machines from each "type" as targets for the GS/SPF, the impact of porting

becomes a major issue. This issue becomes one of deciding how much of the target
machine(s) will be emulated or simulated in the GS/SPF. It also means that for "bare

bones" machines, additional equipment might be needed within the GS/SPF or might
have to be procured by the contractor to transport code.

CSC/SSD- UHCL/RICIS 36 April 1991

CSC/TR-90/6155
GSDE Interface Study

3.5.3 IVTE Machines as Target Machines

v

Because much of the computational equipment for the SSTF will be replicated to support

multiple simultaneous simulations, the SSTF will be delivered in stages that will allow

that the IVTE computers become the operational computers. In other words the IVTE

equipment may be used to integrate and verify operational software and then be delivered

as another "set" of IVTE machines is procured for development of the next simulation

capability.

This process is able to continue until all required simulation capabilities are delivered. It

is possible that the operational systems will be used for IV&T following delivery of all

simulation processors. This raises the issue as to how much development work can be

done in the SSTF IVTE prior to full operational capability, and what will the IV&T

function then require to maintain and develop software for systems that are already
delivered.

It is apparent that there are two IV&T situations to be considered for the SSTF. The first

is the IVTE that will be used for development and then delivered as operational, and the

second is an IV&T capability that will be based in the operational SSTF. Each of these
will have to interface with the GS/SPF in a different manner.

The SSTF IVTE that is used as a development environment will have different interfaces

(both physically and logically) to the GS/SPF before and after delivery to operations. It

would be expected that if the IVTE is used as a development environment that the issues

of configuration control and test status reporting will be different than if the IVTE was

the target of the GS/SPF-based development efforts.

3.6 General Issues for SSCC Software Development

Several issues surround the development of software for the SSCC. These issues include

the mixing of Ada and non-Ada and the multiplicity of target machines. The following

paragraphs discuss these issues.

kin,ira,,,=

3.6.1 Use of Ada and non-Ada in the SSCC

The code to be used in the SSCC falls into three language categories. The first is the
development of new code that will be written in Ada. The second is the "carryover" code

from the Mission Control Center (MCC) that is non-Ada code and the third is the

development of new code that is non-Ada.

CSC/SSD - UHCL/RICIS 37 April 1991

CSC/TR-90/6155
GSDE Interface Study

Note

The MSC contractor has requested a waiver for the use of

non-Ada development languages for much or all of the

SSCC software. One corollary of this waiver request is

that the Rational Ada Development Facility will not be

required if the waiver is granted.

3.6.2

The multiplicity of languages to be used in the SSCC will place demands on the GSDE

to support the development and CM of source code using various languages. Therefore,

it may not be possible to relegate the development of the code to a single system within

the GSDE for development or CM. The GSDE will be required to support several

different compilers and cross compilers, as well as different sets of development tools.

This issue will probably be addressed by allowing code to be developed on workstations,

Rationals (see Note), and the Amdahl, and controlled from each with a central

configuration reporting system. Local CM support (at the developer or user level) will

integrate with a centralized controlling CM system.

Multiple Target Machines for the
SSCC

Like the SSTF, the SSCC will have a multiplicity of targets for the development system

to contend with. There will be three "types" of targets; those targets that will be

procured under the OADP Contract; those that will be procured as part of subsystems

procured under the MSC; and those special targets that are produced by the MSC

contractor. Some of these targets will use SSE standard compilers and tools, others will

use non-SSE standard compilers and tools, and some will be "bare bone machines" with
no OS.

The issue arises as the GSDE will have to support this kind of multiplicity while

maintaining a system of configuration control as well as test result reporting. It is

anticipated that the Amdahl will play a major role as a repository for all code developed

for the SSCC as well as being the center for configuration control and test result

reporting. The tools needed to allow this operation have not been identified yet but are

the subject of the final report.

CSC/SSD - UHCL/RICIS 38 April 1991

CSC/TR-90/6155
GSDE Interface Study

Section 4- Host-Target Transition Interfaces

Although the host-target transition process cannot be fully characterized until the OADP

computers are specified and all special-purpose processors are identified, there are many

transition processes that can be investigated with available information. For some of

these processes, prototyping may be needed to assess the feasibility of proposed interface

support mechanisms.

Three general classes of transition interfaces were investigated. First, operational

procedures were identified for moving software between the host and target
environments, and for controlling software in either environment. Second, a VME

approach to masking the differences between host and target computers was investigated.

Third, the study considered the use of simulations and emulations of special-purpose

devices to support testing on the host side of the transition.

These three areas are discussed in the following sections.

4.1 Operational Procedures

One type of GSDE interface involves the movement of application code objects from one
environment to another, and between machines within an environment. (An "application

code object" is a file or related set of files that may include source, object, and/or

operations scripts.) This object-transfer interface must support file transfer, file location

and status tracking, and reporting of results of operations (e.g., compilations). These

requirements include elements of configuration management and of implementation

status reporting.

There are many different protocols, file managers, and communications tools available

on different platforms to provide low-level interface support. Code management systems

and library support systems also exist in various forms, supporting different languages on

different computers. The requirements for GSDE interface support include performance.

reliability, consistency across different environments, and connectivity to all systems in
the GSDE.

To demonstrate the feasibility and utility of specific mechanisms of interface support,

prototypes can be constructed to permit exercising those mechanisms. The following

sections discuss the operational goals and interface requirements of these support

mechanisms. Subsection 4.1.1 discusses transport and tracking of application code

objects. Subsection 4.1.2 discusses reporting on the status of operations on those objects.

CSC/SSD- UHCL/RIClS 39 April 1991

CSC/TR-90/6155
GSDE Interface Study

4.1.1 Object Transport and Location

Tracking

Application code objects (orjust "objects" in this subsection) axe created, edited,

compiled, tested, revised, and stored, typically all on a single platform. In the GSDE

context, those objects are also relocated, tracked, backed up, remotely compiled,

remotely tested, and superseded on other, usually different platforms. Mechanisms for

managing these objects must take into account the low-level transport and

communications mechanisms that exist in the GSDE, and must also address the range of
different target platforms.

This subsection presents and discusses functional and operational requirements for a

general object transport and location tracking mechanism. In general, those requirements
are as follows:

• Global, unique object naming and namespace management

Operations on all types of objects, including text, object code, structured data,

load images, and collections of objects

Support for redundancy of objects (i.e., backup copies) without confusion or risk

of incomplete deletion or replacement of an object

• Redundancy and reliability of the namespace manager

Distributed support for naming operations and inquiries, with reconciliation and

coordination mechanisms among distributed namespace managers

Transmission control protocol/intemet protocol (TCP/IP) support for moving
objects over LAN and wide area network (WAN)

• Support for network and environment security measures

Logging of all operations so that audit trails and configuration reports can be

generated. (This may apply to a selectable subset of operations or types of
objects)

The operations to be supported are listed in the following. All of these operations must

be accomplished within the security constraints of the GSDE. For example, the

mechanism for deleting an object must require proper authorization.

• Replicating an object, locally or remotely

• Archiving objects

• Inquiry about the location, status, and attributes of an object

CSC/SSD - UHCL/RICIS 40 April 1991

CSC/TR-90/6155
GSDE Interface Study

4.1.2

• Transporting objects (moving or duplicating) between devices

• Creating and naming objects (i.e, from files)

• Deleting objects

• Replacing an object with a new file or set of files (producing a new version of the

object, with appropriate labeling)

• Executing objects

Object Execution and Status

Reporting

In addition to the need to move objects around in the GSDE, there is a requirement to

support execution of objects with feedback on the results of such execution. (The

meaning of "execution of an object" is dependent on the object. For an executable or

batch command file, the meaning is obvious. The term may not apply to all objects.)

For example, a collection of files (source, object code, commands) may be assembled

into a Target-Build object. (The Rational Target Build Utility (TBU) works something

like this.) "Execution" of this object implies execution of the commands on the data,

after the object has been moved to the target platform. The reports from the compilation

process need to be captured and transmitted to the sender of the object.

The types of "execution operations" that will require this support are not yet enumerated.

There is no requirement identified to date for real-time status reporting. It may be

adequate to capture, package; and transmit the status of any operation after the

completion of all object operations. More analysis is needed to clarify this issue. (Refer

to the GSDE Operations Scenarios report for a more detailed discussion).

It is possible that many of the operations identified in Subsection 4.1. I may actually be

supported by def'ming the operations as characteristics of the objects, and then using the

execution facility to invoke any desired operation on an object. Examples of such

operations on objects are

• move (yourself) to platform xxx

• compile (yourself)

• print (yourself).

This is an issue that needs further analysis into reporting requirements, performance

implications, operations required to be supported, and integration with the namespace

management mechanism.

CSC/SSD - UHCL/RICIS 41 April 1991

CSC/TR-90/6155
GSDE Interface Study

4.2 Using a Virtual Machine Environment (e.g., Cronus)

As noted in Section 2, there are problems associated with transitioning software from one

platform to a different one. There are a variety of products, systems, standards, and

concepts that address this problem. The common goal is to mask the differences between

disparate computer systems. Methods include placing constraints on the applications

developers, providing software (e.g., operating systems, standard libraries, simulations)

to hide the differences from application code, and providing conversion systems that

translate applications from one platform context to another.

The specific platform dependencies that must be masked in the GSDE are not yet known.

The ground support systems are still in requirements definition and design, and the

hardware components of the IVTEs are not yet selected. At present, this study will

emphasize investigation of off-the-shelf solutions to parts of the interface problem.

When more details are available about the specifics of the IVTEs, the study effort will

concentrate on the specific requirements for masking platform differences.

In other words, the present study effort is directed at identifying a wide range of

available products, standards, tools, and environments, so that when more detailed VME

requirements are known appropriate solutions can be quickly identified. The research

effort of this study, which is described in Sections 5 and 6, will address the types of

interfaces anticipated in the GSDE.

Although specifics are not yet available, many characteristics of the target systems will

help to bound the range of research. First, the development environment is well

specified. Second, the target environments will be based on selections from a limited set

of machines. Third, previous experience with control centers and simulation systems

provides guidance on the general nature of the software to be supported.

The characteristics of the GSDE computing platforms and the software characteristics of
the SSTF and the SSCC are described in Section 2.

4.3 Simulations and Special Devices

Off-the-shelf methods and tools will be investigated for general platform-to-platform

interfaces. For special-purpose devices and processors, however, generic solutions are

unlikely to be found. Support for cross-development targeted to unique hardware and

software will be addressed on a case-by-case basis. Examples of such special purpose

devices include the SSFP Standard Data Processor, communications hardware for the

SSCC, and visual processing support for the SSTF.

CSC/SSD - UHCL/RICIS 42 April 1991

CSC/TR-90/6155

GSDE Interface Study

In each case, there will be several alternatives to review in supporting cross development.

Those alternatives in general will include the following:

Connecting a copy of the device directly to the GS/SPF for system development

and testing

Building or buying a device simulator that will run in the GS/SPF (or on a

development workstation)

Placing software on the device (e.g., a standard run time executive) that makes it

functionally equivalent to devices that are already supported in the GS/SPF

Stubbing out interactions with the device (for testing purposes) until the software

is transitioned to the target.

As special-purpose devices are defined and detailed requirements are provided by the

MSC and TSC contractors, these options will be analyzed and recommendations made

for resolving these interface issues.

CSC/SSD - UHCL/RICIS 43 April 1991

CSC/TR-90/6155
GSDE Interface Study

Section 5 - Proposed Prototype Work

This document specifies prototyping efforts in the three key problem areas identified in

sections 3 and 4. The three prototyping efforts are as follows:

Development of standard interface support for all elements of the GSDE (i.e.

implementation of a standard POSIX interface) including development of

standard application-to-application communication mechanisms

Support for software development operations such as distributed CM and

implementation status reporting

Analysis of COTS packages, industry standards, and interface concepts that may

aid in solving the problems.

The preliminary version of this report was reviewed by SSE SP personnel, particularly to

assess the usefulness of the proposed prototyping and to ensure that no duplication of

effort would occur. The conclusion was that there is no significant overlap with SSE SP

activities, and the the results of the prototyping would be of interest to the SSE SP.

5.1 Virtual Machine Environment

The creation of a VME requires that two different kinds of interfaces be developed. The

fh'st of these is application-to-operating system. This involves developing standard

interfaces for use on all elements of the GSDE and target environments. This will allow

developed software to be ported from the development environment to the target

environment without requiring any source code changes before compilation on the target

environment. The second interface involves application-to-application and application-

to-OS communication, which will provide data interoperability so that information may

be shared between applications without the need to reformat the data.

5.1.1 POSIX Interface

As POSIX compliance has been mandated for all Unix-based target computer

environments within the SSFP, there is a need to provide this standard interface to

elements within the GSDE. CSC would provide a prototype POSIX/Ada binding that

will be compatible with the Rational Ada Development Environment. This will allow

developers to write Ada software that utilizes the POSIX/Ada binding and does not have

to be modified to compile in the target environment. CSC would also provide a

prototype back-end POSIX simulation on the Rational so developers can perform a

minimal amount of unit testing of the POSIX systems calls within the developed
software.

CSC/SSD - UHCL/RIClS 45 April 1991

CSC/TR-90/6155
GSDE Interface Study

5.1.2

With the provision of a POSIX Ada binding within the Rational Environment, developers

will be able to make references to POSIX system calls directly in the software being

developed, rather than having to "stub out" POSIX system calls as Ada comments that

are then changed on the target machine to allow compilation and execution. The POSIX

Ada binding would implement all aspects of POSIX as expressed in the POSIX standard.

The back-end simulation of the POSIX interface would provide developers with

increased capabilities for unit testing. The simulation would allow developers to execute

software directly in the Rational Environment. This saves the costly effort of porting

code to the target platform to perform testing. Furthermore, as this testing may involve

some level of debugging, the Rational Environment's debugger could be used to aid in
the testing effort.

This prototype would be delivered in three builds. The first build would consist of an

instaUable Ada package specification(s) that supports the complete set of POSIX

interfaces. This gives the developers the ability to code POSIX calls directly in Ada
software being developed on the Rational R1000. The second and third builds would

consist of an executable body for the specification which simulates the actual o_ration

of the POSIX system calls, providing developers with the ability to perform limited unit

testing within the Rational Environment. A report documenting the implementation and

simulation details for this prototype would also be provided.

Interoperability

Since there is a need for different applications to share data within both the SSTF and

SSCC, a standard application-to-application communication mechanism must be

developed. Current efforts are underway to determine if commercial packages such as

Cronus are capable of meeting this need. After this applicability determination, CSC

would be able to provide a prototype application-to-application communication

mechanism. This capability would be prototyped within the GSDE and the target
environments for the SSTF and SSCC.

There are two different kinds of communications between applications: synchronous and

asynchronous. In synchronous communications, one application must wait until the

other is ready to communicate. The waiting application can do no other work until the

communication is complete. Asynchronous communication allows one application to

deposit a message in a mailbox, which can then be picked up and read by the second

application. In asynchronous communication, neither application has to sit idle while

waiting for the communication to occur. Both applications may be performing other
functions. Figure 5-1 shows the differences between these two modes of communication.

Cronus provides the tools to accomplish both methods of communication. CSC would

prototype both modes of communication by using the tools provided with Cronus. In

order not to impose any design criteria on either the SSTF or SSCC, a generic

CSC/SSD - UHCL/RICIS 46 April 1991

CSC/TR-90/6155

GSDE Interface Study

TIME

sl

sl+ s2-

i]_l i ._ i' ' *F*) '

>

Applialton A _ request
for communicationlink m
Al_iculon B, l/len waits

Application B

<

Applk_ion B accepts request
and returns• message,
eeta_i4thing• two-way link

I___ _,__i__̧i

TWo-waycommunicationslink _'_'................, ' ,,_,,'_'_",::iiili!

te_qminate_thediak>O

SYNCHRONOUS COMMUNICATION

t_.t,

t_4,

al

a"l÷ a2"

Application A

_ MAILBOX

Applk:aflon A piacee • meemlge

addressed to Apl_lCaUon O in

• shared mailbox

I

Applic_lionB retr_eveethe
meeaageat some liter lime,
wilho_ contacting
,(_)_icatkm A

Application B

iiiii;,Jii_i_iiiiiii}!iiil i i, :=
I [li_ di_i _iii! :;i

Application A Application B
Al_te_n_ A and B can e,recute
withoutany syn(:hronizalkm

UHCL.OI$

ASYNCHRONOUS COMMUNICATION

Figure 5-1. Communications Modes

CSC/SSD - UHCL/RICIS 47 April 1991

CSC/TR-90/6155

GSDE Interface Study

communication model would be implemented. This would allow the application-to-

application communications to be tailored by the two contractors to meet their needs.

This prototype would be delivered in three builds. The first build would provide an

example of synchronous communication between applications. The second build will

provide an example of asynchronous communication between applications. The third

build would enhance these models on the bases of customer and ground system

contractor feedback. Sample applications will be selected as appropriate for planned

development within the GS/SPF. A report that provides the implementation details for

both models would also be developed.

Both sample communication models would consist of multiple Ada programs that would

make calls to Cronus for the communication services. The synchronous model would

utilize the Rational and the Sun Workstation to execute two Ada applications that would

communicate through Cronus. The asynchronous model would be the same as the

synchronous model, with the addition of Ada tasking. Ada's tasking features would be

used to make the Cronus calls to allow the applications to continue with other processing

while waiting for the communication to complete.

5.2 Software Operations

5.2.1 Distributed Configuration

Management

Because the environments for development and system delivery are different, CM is an

area for concern. The basic toolset for CM would be provided by the SSE, but details of

operational use need analysis in the context of the heterogeneous, distributed target

systems of ground software. (Some of this analysis is provided in the GSDE Operations
Scenarios report.)

Distributed CM provides a means to gain control over all objects (or files) within the

entire GSDE. A single point of control can be established for all objects.

CSC would prototype a distributed CM system, integrated with the SSE-provided

support, based on Rational's Configuration Management and Version Control (CMVC)

system. This prototype would provide for the CM of all information related to the

development efforts of both the SSTF and SSCC regardless of the location of that

information within the network. The prototype would have the capability to access

secondary storage on any networked device. The resident CM system on the Amdahl

would also be able to access configuration data located within the Amdahl environment.

CSC/SSD - UHCL/RICIS 48 April 1991

CSC/TR-90/6L55
GSDE Interface Study

Thisprototypeactivitywould implementadistributedconfigurationmanagementsystem
basedonRationarsCMVC system.ThedistributedCM toolwouldprovidefor location-
transparentcontrolof objectswithin thelocalareanetwork. It wouldallowall objects
(files)on all networkedcomputersto beplacedunderCM. If accessto theAmdahlat
JSCisavailable,theprototypewouldincludeaccessto thissystem.Otherwisethe
prototypewouldbe implementedbetweenCSCnetworkedresources.This prototype
wouldbedeliveredinonebuild,alongwith anaccompanyingreportthatprovidesdetails
on theuseof theprototype.

5.2.2 Implementation Status Reporting

Along with the need for distributed CM, there is also a need to pass status and other

configuration data from the IVTE to the GS/SPF configuration database during the test

and integration phase of the life cycle. CSC would prototype a distributed status

reporting system that would provide for this capability.

The distributed status reporting system provides developers and managers with a single

point of control for all status data associated with a specific development effort.

Developers and test engineers can communicate status data in real-time (or near real-

time) to a single point of contact. Information is then immediately made available to

project management personnel for their use and review.

The use of Cronus as a distributed status reporting tool would be prototyped. This

prototype would provide a single repository for the location of all test and process status

reports. User interfaces for elements of the IVTE and GS/SPF would be prototyped
where Cronus is available.

This prototype activity would provide a client-server model for the maintenance and

tracking of status data within the local area network. The server would be built using the

Rational implementation of Cronus. Client interfaces would be built for all other
network resources for which Cronus is available. This includes the Rational and the Sun

Workstation. As Cronus is not yet available on all GS/SPF resources, this prototype may

require alternate solutions if it were to be turned into a full-scale development effort. A

report would be provided that details some alternative solutions as well as the operation

of the prototype. This prototype would be delivered in one build.

CSC/SSD - UHCL/RIClS 49 April 1991

CSC/TR-90/6155
GSDE Interface Study

5.3 Investigation of Concepts and Environments

5.3.1 Analysis of COTS Packages and
Standards

Several efforts are currently underway to attempt to solve the problem of a

heterogeneous development/target environment. CSC is currently investigating the

applicability of Cronus to help solve this problem. Several other efforts would be

investigated. These include Portable Common Tools Environment+ (PCTE), Common

Ada Interface Set-A (CAIS), and Portable Common Interface Set (PCIS). The results of

this investigation, as well as the applicability of Cronus, would be included in a report on
findings of the prototyping effort.

5.3.2 PCEE Concept Prototyping

The Portable Common Execution Environment (PCEE) is a research effort within RICIS

that addresses the problem of supporting complex, distributed real-time computing

applications. The PCEE concept addresses the concerns of mission- and safety-critical

elements of applications in a fault-tolerant system. A primary goal of the PCEE research

effort is to define a portable interface between applications and the distributed computing

system. The PCEE concept addresses development, integration, and operational

environments and prescribes tools (or tool attributes) for each. The PCEE concept

proposes a common interface to differing instruction set architectures, data bases, data

communications systems, bare machine implementations, and operating systems.

One of the main thrusts of the work being done by CSC for RICIS is to explore methods

and produce software prototypes to facilitate interfacing the GS/SPF and the IVTE. This
effort is to some degree a subset of the PCEE research. CSC would review the PCEE

concept and apply it to the specific problem of interfaces within the GSDE.

PCEE is still a research concept, with no actual implementation. CSC's prototyping

effort in this area would address practical application of the concept in two ways. The

f'trst is to map the methodology described in the PCEE literature into the SSE-supported

procedures for software development in the GSDE. The second phase of PCEE

prototyping would be to implement some of the applicable tools and methods in
software.

The first effort would focus on the elements of the PCEE concept that apply to the

GSDE, and would review methods and tool characteristics proposed for those aspects of

ground software development. The outcome of this stage of prototyping would be a

report on how the PCEE concept can be mapped into the real world of the GSDE.

CSC/SSD - UHCL/RICIS 50 April 1991

CSC/TR-90/6155

GSDE Interface Study

The second effort would concentrate on developing prototype software implementing

those elements that fit the GSDE interface problem. Those elements would include

interface support tools and distributed development control software. Two concepts in

PCEE that seem relevant, based on preliminary analyses, are the DIADEM project, with

its virtual node approach to distributed real time control, and the described requirement

for Ada-based multiprocessing and interface support.

The products of this second stage of PCEE investigation would be software prototypes of

tools and utilities for application within the GSDE.

CSC/SSD - UHCL/RIClS 51 April 1991

CSC/TR-90/6155

GSDE Interface Study

Section 6 - Technical Approach

The technical approach that CSC would use in building the prototypes comprises the

following activities: identifying the questions to be resolved, designing the prototype to

address the questions, constructing the prototype, using the prototype to answer the

questions, and assessing the results. This approach ensures that each prototype meets the

specific needs of the customer. This process would be used to build evolutionary

prototypes, which may then be used as the basis for a full-scale development effort.

This technical approach is prescribed by CSC's Digital Systems Development

Methodology (DSDM). A prototype is an early experimental model of a system, system

component, or system function that contains enough capabilities for it to be used to

establish or refine requirements or to validate critical design concepts. It is not meant to

be as reliable or robust as an operational system and is seldom constrained by stringent

performance, safety, security, or operational requirements.

The most important element in planning and using prototypes is to have a clear statement

of the objective of the prototype effort. Such a statement would be developed and

reviewed before each prototyping effort. The construction and exercise of each

prototype would be based on this statement of objective, and the assessment of the

prototype would reflect it.

The deliverables for this effort include technical reports and operational prototypes.

Section 6 provides the listing of these items.

6.1 Project Organization and Resources

6.1.1 Contractor Facilities

The key resources for this effort are located at CSC's Virginia Technology Center in

Falls Church, Virginia, at CSC's STAR*LAB. The STAR*LAB includes various

networked workstation technologies as well as a Rational R1000 Ada Development

Environment. The Rational R1000 would be used to develop the Ada software required

to complete the prototype effort. A Sun 3/260 and other workstations would serve as the

target environment for the prototype.

To demonstrate multisite development, CSC would use workstations and mainframes at
other sites via an Internet connection. Other sites include CSC, other contractor facilities,

and UHCL.

CSC/SSD - UHCL/RICIS 53 April 1991

6.1.2

6.1.3

CSC/TR-90/6 155
GSDE Interface Study

Software Engineering Environment

Commercial Software. The prototyping efforts described in this plan would make use

of the following software:

Rational R1000 Ada Development Environment - includes:

Configuration Management and Version Control (CMVC)

language Sensitive Editor

Compiler

Library Manager

Project Management Tools

Distributed Tool Integration Architecture (DTIA)

Additional Rational Products:

Target Build Utility (TBU)

Rational X-Windows Interface (RXI)

Amdahl Items:

Ada Compiler System (GFE via network access)

Operating System (GFE via network access)

TCP/IP Networking Software (GFE via network access)

Workstation Products:

Workstation OS (GFE)

Technical Publishing Tools (i.e. Interleaf, Framemaker, etc.) (GFE)

CASE Tools (GFE)

Computer Systems. The following items would be utilized in the performance of the

prototyping efforts identified in this plan.

Rational R 1000 Model 100 (at Star*Lab)

Amdahl 300E (at JSC)

Apollo Workstations (GFE)

Government.Furnished Equipment,

Software, and Services

To accomplish the goals of this prototyping effort, CSC would require the following
GFE:

Three fully configured Apollo workstations with all SSE software packages; one

at CSC's Virginia Technology Center in Falls Church, Virginia, one at CSC's

Houston office, and one at UHCL, for distributed prototyping

CSC/SSD - UHCL/RICIS 54 April 1991

CSC/TR-90/6155
GSDE Interface Study

• Access to the Amdahl mainframe located at JSC

• Access to standard TCP/IP software on the Amdahl.

6.2 Prototyping Products

This paragraph lists the deliverables and milestones for the prototyping effort described

in Section 5. The products of the prototyping effort are as follows:

• POSIX-Ada binding software and documentation (Rational Ada software)

POSIX simulation software, (Rational Ada software)

Prototype design report

Build 1 - first-priority executable package bodies

Build 2 - second-priority executable package bodies

Data Interopembility prototype (Cronus-based Ada software)

Prototype design report

Build 1 - synchronous communications support

Build 2 - asynchronous communications support

Build 3 - revised/enhanced communications support

• CM Operations prototype (operational interface to SSE CM system)

Implementation Status Reporting software

Prototype design report

Build 1 - prototype software

PCEE prototype

Applications report

Tool/utility software

6.3 Risk Management

Table 6-1 lists the risks associated with each of the prototype activities described above,

and the means to mitigate these risks.

CSC/SSD - UHCL/RICIS 55 April 1991

CSC/TR-90/6155
GSDEInterface Study

Table 6-1. Risk Mitigation Strategy

Prototyping ACtivity

POSIX Interface

Inter_era_lity

Dis_butedCM

Implementation Status;
Reporting

Risk
I

POSIX Standard Changes

Cronus does not provide
adequate solution

Cronus is not available on

all required platforms

Rational/Cronus does not

provide adequate solution

No access to Amdahl at JSC'

Cronus is not available on

all required platforms

Cronus does not provide
adequate solution

No access to GSDE
elements

Cronus is not available on
all required platforms

Mitigation Plans

Low Risk: Fix binding to
match new standard

i

Medium Risk: Determine

if other COTS products
are available (from results
of COTS study)

High Risk: Determine
costs of having Cronus
ported to all platforms. If
this is unacceptable, other
solutions will need to be

investigated

Medium Risk: Determine

if other COTS products
are available (from results
of COTS study)

Medium Risk: Implement
prototype between
Rational and Sun at CSC
site

High Risk: Determine
costs of having Cronus
ported to all platforms. If
this is unacceptable, other
solutions will need to be
investigated

Medium Risk: Determine

if other COTS products
are available (from results
of COTS study)

Medium Risk: Implement
prototype between
Rational and Sun at CSC
site

High Risk: Determine
costs of having Cronus
ported to all platforms. If
this is unacceptable, other
solutions will need to be

investigated

CSC/SSD - UHCL/RICIS 56 April 199t

CSC/TR-90/6155
GSDE Interface Study

6.4 Technical Information Interfaces

CSC would need to maintain an interface with each of the other contractors (Loral Space

Information Systems, CAE-Link, and Lockheed) involved in SSFP ground system

software development. CSC would support the configuration control board meetings to

be held at JSC (or alternate site as identified by the .I'SC technical monitor).

6.5 Product Assurance Plan

CSC's Digital Systems Design Methodology (DSDM) prescribes a specific set of policies

and procedures for assuring system quality and integrity. The intent of CSC's approach

to product assurance is to make quality assurance and configuration management an

integral part of system development. To that end, guidelines have been established for
consistent application of quality assurance (QA) and CM throughout the development

process. Essential elements of CSC's approach include peer inspection and certification,

independent review, product assurance recordkeeping, CM, and use of proven

development methodologies.

6.5.1 Quality Assurance Approach

The small size and investigatory nature of this effort require that product assurance

procedures be relatively informal. The end products of the effort are prototypes of

software development tools and utilities and the assessments of those prototypes. The

products would be constructed rapidly and are subject to frequent changes during use.

This developmeCnt profile makes it important to record changes and reactions to the

prototypes and reduces the importance of acceptance testing. The intended use of the

prototypes--investigating interface issues and potential resolutions--makes it necessary to

streamline the change procedure so that developers can respond quickly.

The quality goals for a prototype differ from those which apply to an operational system.

It would be counterproductive to mandate that prototypes meet the same performance

and documentation standards as operational systems. Accordingly, the standards that

would be applied to this effort would reflect the need for clear statements of objective

and usefulness in meeting that objective. Review and approval procedures would

emphasize responsiveness to the needs of rapid development and frequent change.

Prototypes would not be subject to the same level of CM that would be applied to an

operational system, but would serve to ensure that changes are recorded and results are

repeatable.

CSC/SSD - UHCL/RICIS 57 April 1991

CSC/TR-90/6155
GSDE Interface Study

The product assurance plan for this work consists of the following elements:

Use of the DSDM-prescribed methodology for prototyping, as noted in Section

6.1, along with relevant NASA SMAP guidebooks (e.g., Software Quality
Assurance, Software Audits)

Designation of a product assurance officer to serve as an independent reviewer

and records auditor (note that this is not a full-time position, but rather a role to
be filled on an as-required basis)

Use of peer inspections and reviews to insure continuing technical integrity of the
prototypes during development

A specifically defined set of procedures and electronic utilities to record

development progress, prototype changes, planned assessments, and reactions of
users.

As prescribed by DSDM, the specifics of these product assurance elements would be

defined under separate cover. They would be formulated as working notes, and would be

documented in the specific prototype design planning reports.

6.5.2 Configuration Management

While CM is not as rigorous in a prototype development as it is for operational software,

there is still a need to be certain of what version of software is being tested or distributed.

In addition, worthwhile operational experience with distributed CM would be gained
through the use of appropriate tools.

6.5.2.1 Software Library

The software library for this prototype effort would be maintained primarily on the

Rational R1000 under Rational's Configuration Management and Version Control

(CMVC) system. This system allows for the complete configuration management of all

developed software items. Non-developed item (NDD hardware and software would be
maintained by tracking the versions of these items in ASCII files within an NDI

subsystem. Changes in versions/releases of NDI can then be tracked via changes in the
CMVC-controlled text files.

CSC/SSD - UHCL/RlClS 58 April 1991

CSC/TR-90/6155
GSDE Interface Study

6.5.2.2 Problem/Change Report

Problem/change reports would be kept and tracked via Rational's Project Management

Facility. This facility provides the means to electronically define, maintain, and track

problem reports. Except for reporting, there would be no need for paper transactions.

CSC/SSD - UHCL/RICIS 59 April 1991

CSC/TR-90/6155

GSDE Interface Study

Section 7 - Summary and Findings

This document reports on a high-level study of internal GSDE interfaces. The study

effort has focused on the requirements for interface support mechanisms occasioned by

the separation of host and target environments (the GS/SPF and the IVTEs, respectively).

The study has identified specific interface issues that need to be addressed, and has led to

a prototyping plan to address these issues. The investigation has included examination of

off-the-shelf software to see if ready-made solutions can be found. The support that

would be provided by the SSFP SSE was also taken into account.

This study provides a basis for the more detailed interface analysis provided in the GSDE

Operations Scenarios report. This report addresses general issues and considerations of

the development to target interface; the latter report discusses specifics of data interfaces

between the GSDE Amdahl and the computers in the two IVTEs.

At the present stage of ground system development, the requirements for interface

support in the GSDE are not completely defined, and are in a state of flux due to the

overall SSFP restructuring activity. More up-to-date information is required from both

TSC and MSC contractors as the two system developments progress. Information about

the OADP-procured platforms is also required but will not be available until a contractor

is selected. Nonetheless there are general issues of interface that have been defined and

investigated within the limits of available information.

More work is needed to characterize the IV&T process in the GSDE, with particular

attention to configuration management and change control of items of operational

software. The prototyping effort described in this report would develop model

procedures and tools (based in part on the operatins scenarios reported elsewhere) to
demonstrate methods of dis_buted CM with centralized storage and overall control.

Capabilities of the SSE-provided CM tools would be central to this effort.

Other work in support of the software development process involves procedures for

implementation status reporting between platforms. The requirements for such reporting

have been defined in general, and demonstration software would be developed in a status

reporting prototype.

There are several initiatives, commercial and academic, to standardize interfaces across

different platforms. These include the POSIX standards, Cronus, and PCEE. Each of

these initiatives has the potential to solve some elements of the interface problem. The

characteristics and maturity of these (and other) initiatives were briefly investigated in

view of general GSDE requirements. The investigations were not sufficiently detailed to

support recommendations for incorporating these initiatives into the GSDE.

,_,'(/ i,'_!A •

CSC/SSD- UHCL/RICIS 61 April 1991

CSC/SSD- UHCL/RICIS 62

CSC/TR-90/6155
GSDEInterface Study

April 1991

CSC/TR-90/6155

GSDE Interface Study

AAS

A/D

AADS

Ada

ADF

APSE

CAIS-A

CM

CMVC

COTS

Cronus

CSC

D/A

DBMS

DEC

DMS

DSDM

DTIA

CSC/SSD - UHCL/RICIS

Glossary and Abbreviations

Advanced Automation System (an example of cross-development

of a large Ada ground-based real-time system)

analog to digital

Automated Attitude Determination System (an example of cross-

development of a NASA ground system)

Ada programming language; Ada is a registered trademark of the

US Government, Ada Joint Program Office

Ada Development Facility (a Rational product, part of the SSE)

Ada Programming Support Environment

Common Ada Interface Set-A

configuration management

Component Management and Version Control system (a

component of the Rational ADF)

commercial, off-the-shelf (i.e., commercially available hardware

or software products not requiring SSFP-specific development

distributed network operating system, developed at Rome Air

Development Center

Computer Sciences Corporation

digital to analog

database management system

Digital Equipment Corporation

Data Management System, the onboard computer software

platform for SSFP applications

Digital Systems Development Methodology, a trademark of the

Computer Sciences Corporation; a detailed set of project

management guides and procedures

Distributed Tool Integration Architecture

63 April 1991

CSC/TR-90/6155
GSDE Interface Study

FAA

FAC

GERM

GESS

GFE

GS/SPF

GSDE

GSFC

IBM

IV&T

IVTE

JSC

LAN

MCC

MIPS

MOD

MSC

NASA

NDI

OS

PCEE

PCIS

PCTE

POSIX

Federal Aviation Administration

Ford Aerospace Corporation

Generalized Entity-Relationship Model

Graphics Executive Support System; executive software for IBM-

mainframe-based ground software systesm at GSFC

government furnished equipment

Ground Systems Software Production Facility

Ground Systems Development Environment

Goddard Space Flight Center

International Business Machines

integrations, verification, and test

Integration, Verification, Test Environment

Lyndon B. Johnson Space Center

local area network

Mission Control Center

millions of instructions per second

Mission Operations Directorate

Mission Systems Contract

National Aeronautics and Space Administration

non-developed item

operating system

Portable Common Execution Environment

Portable Common Interface Set

Portable Common Tool Environment

Portable Operating System Interface (standard)

CSCISSD - UHCL/RICIS 64 April 1991

QA

RICIS

RXI

SDP

SIB

SMAP

SMM

SPF

SSCC

SSE

SSFP

SSTF

TBU

TCP/IP

TSC

UHCL

VME

WAN

CSC/TR-90/6155
GSDE Interface Study

quality assurance

Research Institute for Computing and Information Systems

Rational X-Windows Interface

Standard Data Processor, the general-purpose onboard computer

for Space Station Freedom

simulation interface buffer

Software Management and Assurance Program, a set of guidelines

developed by NASA for safety, reliability, maintainability, and

quality assurance of software

Solar Maximum Mission (an example of cross-development for

load-sharing purposes, at GSFC)

software production facility

Space Station Control Center

software support environment

Space Station Freedom Program

Space Station Training Facility

Target Build Utility; a component of the Rational' ADF

transmission control protocol/intemet irotocol; a network interface

standard

Training Systems Contract

University of Houston-Clear Lake

virtual machine environment

wide area network

65 April 1991CSC/SSD - UHCL/RICIS

Copies of this publication have been deposited with the Texas State Library in
compliance with the State Depository Law.

